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We describe the parallel implementation of a numerical method, 
known as the random vortex method, for simulating fluid flow in 
arbitrary, complex geometries. The code is implemented on the Con- 
nection Machine CM-2, a massively parallel processor. The numerical 
method is particularly suited for computing complex viscous, incom- 
pressible flow across a wide range of flow regimes and characteristics. 
In this method, the vorticity of the flow is approximated by a collection 
of particles whose positions and strengths induce an underlying flow. 
As such, it is a Lagrangian scheme, in which the position of each par- 
ticle is affected by all others at each time step. The efficient execution 
of this method on the Connection Machine results from a parallel 
N-body solver, parallel elliptic solvers, and a parallel data structure for 
the adaptive creation of computational elements on the boundary of the 
confining region. Using this method, we analyze the generation of large 
vortex structures, mixing and shedding under various flow geometries 
and inlet/outlet profiles. The data from our simulations are visualized 
using the real-time flow visualization environment developed on the 
Connection Machine. 0 1992 Academic Press, Inc. 

INTRODUCTION 

In this paper, we describe the development of a code to 
model two-dimensional fluid flow in general geometries. 
The random vortex method is used to approximate the 
equations of viscous, incompressible flow, and the code 
is implemented on the Connection Machine CM-2, a 
massively parallel processor with a hypercube interconnec- 
tion network. Using this method, we model the solution to 
a variety of complex flow problems. We study the genera- 
tion of large vortex structures, mixing and shedding in 
various flow configurations, and analyze the dependence 

* Supported in part by the Applied Mathematics Subprogram of the 
Office of Energy Research under Contract DE-AC03-76SFOOO98. This 
author also acknowledges the support of the National Science Foundation 
and the Sloan Foundation. 

of these structures on domain geometry, inlet/outlet 
placement, and profiles. 

The random vortex method, introduced by Chorin [ 121, 
is a particularly complicated method for computing viscous, 
incompressible flow across a wide range of Reynolds 
numbers, and can accurately capture the development of 
large-scale flow structures in the laminar, transitional, and 
turbulent regimes, see [31]. In this method, vorticity is 
approximated by a collection of particles whose positions 
and strengths induce an underlying flow. As such, it is a 
Lagrangian method, in which the position of each particle is 
affected by all others at each time step. The data structures 
that connect elements are complex, and information is 
passed among all elements at each time step. Consequently, 
the implementation of this method on a parallel processor is 
a challenging task, requiring a careful marriage of architec- 
ture and algorithm. At several stages, we have significantly 
altered the problem, method of solution, and implementa- 
tion to perform efficiently on a massively parallel machine. 

Some of the key issues confronted in the design of a 
parallel implementation of vortex methods were: 

(a) The design of efficient parallel N-body solvers. 
(b) Accurate elliptic solvers in highly complex 

geometries. 
(c) Efficient run-time data mappings between several 

processor topologies. 
(d) Complex parallel boundary conditions to allow 

arbitrary geometries as input. 
(e) Parallel real-time flow visualization for interactive 

flow diagnostics. 

In particular, the implementation of a vortex code 
necessitates the solution of both an N-body problem and of 
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Poisson’s equation at each time step. The N-body problem 
requires the evaluation of a particle-particle interaction 
between all pairs of particles, which is accomplished by 
means of a “orrery” to cycle through all possible interac- 
tions in our parallel environment. The elliptic Poisson 
solver is solved using an iterative method and is made 
efficient through the use of communication stencils in the 
nearest neighbor grid updates. Finally, dynamic recon- 
figuration of data in the processors is used as the number of 
Lagrangian elements increases and decreases. Additionally, 
we employ a real-time visualization environment based 
on parallel graphics computations which mimics flow 
diagnostic techniques in laboratory apparatus. 

We study flow in a variety of configurations, such as flow 
in a doubly symmetric step, flow around islands, and flow in 
a piston/valve. Our results reveal a collection of fascinating 
flow phenomena. We visualize the results of these calcula- 
tions using the real-time flow visualization environment 
developed on the Connection Machine. 

PART ONE: BRIEF OVERVIEW OF 
VORTEX METHODS: 

LA. Equations of Motion 

Vortex methods are attractive techniques for calculating 
viscous, incompressible, turbulent flow. The critical flow 
quantity in this approach is the oorticity, which is the curl of 
the velocity and represents the amount of rotation at a point 
in the flow. Instead of an Eulerian finite difference mesh, a 
Lagrangian approach is taken in which the initial vorticity 
field is discretized into a large number of vortex elements 
whose ensuing motion describes the evolution of the flow. 

At any time, the velocity of the fluid may be recovered from 
the positions and strengths of the vortex elements. 

The advantage of this technique is twofold. First, since no 
grid is introduced, this Lagrangian approach avoids the 
introduction of numerical viscosity which swamps the real 
physical viscosity. Second, the method is dynamically adap- 
tive: computational elements are naturally clustered in 
regions of high vorticity where flow gradients are large and 
accuracy is required. As such, vortex methods have proven 
to be a powerful technique for modeling much of the 
intricate, complex behavior of turbulent flow (see [29]). 

The starting point is the voriticity transport equation in 
two dimensions for the vorticity vector { = Vxu, namely, 

$+(u.v)+2(, u=Oon 6D. (1.1) 

In order to “close” Eqn. (I.1 ), we must recover u from the 
vorticity. Given that V. u = 0 and < = Vxu, we know that 
there exists a vector function v(x) such that u = Vx\lr and 

V2w = -5. Thus, we may write w, and consequently the 
velocity u, in terms of c by making use of the fundamental 
solution to the Laplace operator V2. Recall that the solution 
to this Poisson equation for the stream function is given by 
ty(x, t) = s L(x -z) t(z) dz, where L(x) = (- 1/2n) log 1x1. 
Since u = Vxv, we have that 

u(x, t) = j- K(x -z) t(z) dz, U-2) 

where the kernel K is defined by (1/271)(( -x2, x,)/lx12). 
If we envision the initial condition <(x, 0) as describing 

Thus, for two-dimensional flow, the basic idea behind 

the vorticity of the particle initially located at x, we may 
then ask for the ensuing motion of particles located at all 

vortex methods is to discretize in both space and time the 

possible starting points. This leads to a Lugrungiun formula- 
tion for the particle trajectories, which we now formulate. 
Assuming inviscid flow for the moment, we may numerically 

initial value problem described by the evolution of a discrete 

approximate the Lagrangian formulation by following the 
evolution of a discrete number of particles, each carrying 

set of particles, Given an initial vorticity distribution 

vorticity. Unfortunately, since the kernel is singular, as 
particles come close together, they can exert extremely large 

((x, 0), we begin by constructing a lattice Ah in R2, with 

velocities on each other which can result in numerical 

mesh size h. Let jh be the mesh points of /Ih, where j is an 

instability. The essential numerical idea, introduced by 
Chorin [ 121, is to replace the singular kernel by a smoother 
one, obtained by convolving K with a smoothing function. 

ordered pair with integer coefftcients. Then the motion 

The original smoothed kernel chosen simply set the radial 
velocity inside a given cutoff size 6 to be constant, thus 

(Eq. (1.2)) of the set of particles originally located on the 

eliminating the singularity. The first convergence proof for 

nodes of this lattice may be approximated by 

a vortex blob method was given by Hald [20]. Since that 
time, a large number of smoothed kernels have been 
constructed, providing vortex methods of various orders of 
accuracy. For analysis of the various properties of cores, see 
[S-lo, 19-21, 261. For the rest of this section, we shall 
simply assume that the singular kernel K has been replaced 
by an appropriate smoothed kernel K,. 

dx~f’ t)= c K6(X(jh, t) 
ihEAh 

- X(ih, t)) <(X(ih, t), t) h’. (1.3) 

Equations (1.3) form a finite system of coupled differential 
equations. The time derivative is approximated by a suitable 
finite difference operator to provide a complete algorithm 



2D VISCOUS INCOMPRESSIBLE FLOW 187 

for updating the positions of the particles in time. This 
completely specifies the vortex method for inviscid flow. 

The extension of vortex methods to viscous flow requires 
treatment of the viscous diffusion term l/R V*t in Eq. (I. 1). 
We follow the technique introduced in [ 131 and allow the 
vortex elements to undergo a random walk to simulate 
viscous diffusion. Thus, to accomplish both advection and 
diffusion, we update the positions of the infinite system of 
particles by (1) advancing them by their induced velocity 
field and (2) adding an appropriately chosen random step. 
Details about the random walk approximation to the viscous 
term in vortex methods may be found in [ 13, 16, 17, 301. 
Convergence proofs of various aspects of the inviscid and 
viscous vortex method may be found in [S-lo, 19-21, 231. 

For both inviscid and viscous flow, the addition of the 
normal boundary condition is conceptually straight- 
forward. Let u,,,(x, t) be the velocity field obtained from the 
distribution of vorticity. Given a region D, the normal 
boundary condition requires that u . n = 0 on the boundary 
dD, where n is the inward normal vector. Suppose we find a 
potential flow upot = V4 such that (upot + u,,,) . n = 0 on aD. 
Then superposition of the vorticity flow upot with the 
potential flow uvor yields a flow which satisfies the normal 
boundary conditions by construction and has the same 
vorticity (since Vxupot = Vx V4 = 0). Note that this potential 
function must be found at every time step. Some possibilities 
are conformal maps, the method of images, and fast Poisson 
solvers. In the case of complex geometries, considerable 
work may be involved in constructing the potential flow. 

The addition of the tangential no-slip condition (u . z = 0) 
(z is the unit tangent to solid walls) on aD for viscous flow 
adds considerable complexity. A thin boundary layer transi- 
tion zone must develop between the vanishing tangential 
velocity at the wall and the rapidly moving flow away from 
the wall. Thus, we must create and release vorticity from the 
solid. One technique for doing so was introduced in [ 131 
and described in detail in 11301. Close to solid walls, the full 
Navier-Stokes equations are replaced by the Prandtl 
boundary layer equations, which are derived under the 
assumption that au/ax < au/+, and that diffusion of vor- 
ticity occurs mostly in a direction normal to the wall. Thus, 
vorticity in the boundary layer is discretized by finite length 
vortex sheets. The jump in the iangential velocity across the 
sheet determines its strength. Just as for the vortex blobs, 
the velocity of each sheet can be constructed by summing 
the influence of all sheets located in a narrow neighborhood 
nearby. Thus, we may derive a force law for the velocity 
induced on a vortex sheet by others (a full derivation may 
be found in [34]). Imagine a collection of k vortex sheets, 
which are short line segments parallel to the wall across 
which the tangential velocity jumps. We define the strength 
tk of each sheet k, 1 <k d N, located at (x,, yk), to be the 
negative of the tangential velocity above, minus the tangen- 
tial velocity below. That is, 

581/101/1-13 

M% Yk) = -(U'(& Yk) - u-b!0 Y/r)) 

where the superscript + and - refer to the limit from above 
and below, respectively, and u is the velocity tangential to 
the solid walls. We represent the velocity as seen at 00 in the 
Prandtl boundary layer equations by a line of vortex sheets 
at the edge of the boundary layer with strengths at each time 
step equal to the current tangential velocity induced by the 
interior vortex blobs plus the potential function. Then the 
single force law that gives the u component of the velocity at 
vortex sheet i, given by all the others in the boundary layer, 
is just 

u(xi, yi) = 5 tj max(O, 1 - Jxi - x,1/h) 
j=l 

X ( 
1 + Sign( Yj - Yi) 

1 2 . 
(1.4) 

Using the incompressibility of the flow, a similar expression 
may be derived for the normal component u of the sheet 
velocity, namely, 

u(xi7 Yi)= -tllh) C Ctj min(Yi, Yj) 
all sheets j = 1, N 

x max(O, 1 - (xi + h/2 - xi I/h) 

-max(O, 1 -Ixi-h/2-x,1/h)]. (1.5) 

Finally, in order to satisfy the no-slip condition along the 
solid walls, we create sheets at discrete points along the 
boundary whose strengths exactly cancel the existing 
tangential velocity, satisfying the no-slip condition. 
Complete details may be found in [29, 343. 

To summarize, at each time step we must: 

(1) Calculate two N-body problems (interior and 
boundary) 

(2) Solve a potential flow for the no-flow condition 
(3) Dynamically create vortex elements for the no-slip 

boundary condition. 

I.B. Implementation 

In this section, we outline how the various stages of the 
vortex method may be efficiently mapped onto the different 
communication patterns of the Connection Machine 
CM-2 (for details about the Connection Machine, see 
Appendix A). Here, we only note that for structured 
communication patterns, the machine processors may be 
naturally configured as a k-dimensional grid with nearest 
neighbor communications. 

To begin, we wish to accommodate arbitrary rectilinear 
geometries. Thus, to initialize the geometry and the flow 
conditions on input, we configure the processors as a two- 
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dimensional rectangular grid. The bounding confinement 
geometry is then drawn on grid lines, with those processors 
corresponding to points within the flow geometry being 
active. Various flags then determine whether a processor is 
located inside the domain, on the boundary, or outside the 
domain. 

The vortex elements are stored as arrays with the pro- 
cessors configured as a one-dimensional grid. The number 
of elements in this array can rise and fall as vortex elements 
are both created at solid walls and destroyed as they leave 
the computational domain. This can leave holes in the array 
as processors corresponding to exiting elements are turned 
off. To efficiently utilize this array, we perform “garbage 
collection” which removes these holes and collapses the list 
to include only the active processors. 

The N-body problem is solved by a parallel implementa- 
tion of the direct method. Thus, we evaluate all possible 
pairwise interactions using the exact Biot-Savart force law. 
There are several reasons why we chose a direct method, 
rather than a fast summation technique, such as local 
corrections [5], hierarchical models [3, 71, and multi-pole 
techniques [ 181 for approximating the interaction. First, we 
wanted to perform a careful study of the speedup that would 
result from a parallel implementation of the direct method, 
to provide comparison with a serial implementation. 
Second, the interaction between computational elements 
in the boundary layer is extremely complex, including 
several Heaviside functions and switches, unlike the 
straightforward inverse distance force law in the interior. 
These switches locate nearby computational elements, 
which are the only ones that contribute in the boundary 
force law expression. The original boundary layer algorithm 
by Chorin [13] evaluated these switches by computing the 
distance between all pairs of elements, which is an O(N’) 
operation, see [30]. Baden and Puckett [S] perform a bin 
mechanisms to efficiently locate nearby elements, but this 
becomes intractable for the highly complex geometries 
under consideration here. While a multi-pole type expan- 
sion might be appropriate for the force law in the interior, 
to the best of our knowledge the intricate boundary force 
law cannot be easily cast in such a framework. Consequen- 
tely, we chose a different approach, namely, to pass all the 
computational elements to the N-body solver, and rely on 
the efficiency of our parallel N-body solver to calculate the 
appropriate interactions. Our solver relies on a replicated 
“orrery” to cycle through all the possible interactions. In 
this technique, the processors are configured as a three- 
dimensional grid, with the location and strength of the vor- 
tex elements stored in the memory of the processors on the 
front face of this three-dimensional cube. Copies of this data 
are then spread to the other processors throughout the cube 
in such a way that all vortex-vortex interactions can be 
accumulated by nearest neighbor communications through 
the depth of the cube. (A different technique for evaluating 

the N-nody interaction by means of an all-to-all broadcast 
is described in Appendix B.) 

Finally, we must solve for the potential flow at each time 
step. Of course, a large number of techniques are available 
for solving such problems, including direct methods and 
conformal maps. Our consideration of arbitrary rectilinear 
geometries and massively parallel architectures leads quite 
naturally to iterative techniques for three reasons. First, 
given highly complex geometries with the possibility of thin 
narrow regions, multiple 90” corners and interior islands, 
the linear system associated with a finite difference 
approach is easy to formulate when compared with image 
techniques or conformal maps. Second, the fast nearest 
neighbor communication in a parallel setting allows the 
simultaneous update of all interior points every step of the 
iteration. Finally, while iterative techniques require good 
initial guesses, an excellent starting value is provided by the 
solution to the potential flow at the previous time step. For 
our initial implementation, we chose overrelaxation with 
red-black ordering and Chebyschev acceleration. (For an 
implementation involving conjugate gradients techniques, 
see Appendix B.) 

PART TWO: PARALLEL DATA LAYOUT, N-BODY 
SOLVERS, AND ELLIPTIC SOLVERS 

II. Input: Organization of Input of Arbitrary Geometry 
and Flow Conditions 

In this section, we describe the organization and data 
mappings of the input of arbitrary geometry and flow condi- 
tions. We consider the processors of the machine connected 
as a two-dimensional grid and label this the “compute 
region.” The user may specify any rectilinear geometry, 
complete with interior islands, lying on grid lines within the 
compute region. The user also specifies the location of inlet 
and outlet locations, as well as inflow/outflow profiles. The 
setup is shown in Fig. 1. 

Our basic plan is as follows. We tag the processors 
according to their location relative to the flow geometry 
within the compute region. These “processor tags” will be 
used in several ways: 

(1) The iteration for the Poisson solver is performed 
over the entire compute region. However, masks built out of 
the processor tags will construct the correct stencil update 
at the boundary of the flow geometry. Thus all processors 
within the compute region may be updated simultaneously 
in parallel, with no special attention applied to boundary 
points. 

(2) Processsor tags along the boundary are used to 
determine the local orientation and interaction of vortex 
sheets within the numerical boundary layer. 
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FIG. 1. Relationship between compute region and flow geometry. 

(3) Processor tags are used to locate the vortex 
elements as they move and determine whether they should 
be traded across the numerical boundary layer, reflected 
across solid walls, or eliminated as they leave the flow 
geometry. 

Thus, the processor tags connect the underlying flow 
geometry with the moving vortex elements. These tags are 
built as follows: First, the processors are tagged corre- 
sponding to their location, either interior, boundary, or 
exterior. The boundary processors are then divided into 
solid wall processors or inlet/outlet processors. Next, all 
boundary processors are assigned a unit vector (bx, by) 
pointing in the inward normal direction. Next, tags are built 
to determine the distance from a processor to the boundary, 
to be used in determining the transition point from sheets to 
blobs and vice versa. Finally, an input variable (flow-value) 
determines whether or not the segment is a solid wall or an 
inlet/outlet. If no argument is supplied, then the segment is 
a solid wall. If a real number value is prescribed, then the 
flow is assumed to be moving through that segment with 
velocity vector (flow-u&e 1 bx,, j 1, flow-value 1 byi,i I). Note 
that a positive value for “flow-value” means that the fluid is 
moving to the right (if by, j = 0), or up (if bxi,j = 0), 
independent of whether this motion carries fluid in or out of 
the domain. 

III. The N-Body Solver 

In this section, we describe the implementation of the 
N-body solver on the CM-2 parallel architecture. Two calls 
to the N-body solver are required: one for the vortex blobs 
and one for the vortex sheets. Because the only difference 
between the two calls is the particular force law, we focus on 
N-body solvers for a general force law. 

A direct implementation of an N-body algorithm on a 
serial machine requires O(W) operations, since all pairwise 
interactions must be computed. At the other extreme, 
imagine a parallel computer with N2 processors. In this 
case, each processor can perform one of the pairwise inter- 
actions, thus all the force interactions can be computed 
simultaneously in 0( 1) time, and the complexity of the algo- 
rithm depends only on the communications involved in 
summing over the computed interactions. In a hypercube 
interconnection scheme, this can be done in O(log N) 
time. 

In between these two extremes lies another canonical 
case, where one has the same number of processors P as 
bodies N. Imagine that N = P processors are connected as a 
ring and that processor i accumulates the forces on body i. 
At each time step, N of the pairwise interactions are com- 
puted, then the appropriate data are passed around the ring 
so that in N steps all N2 interactions have been computed 
and accumulated into the correct processor (see Fig. 2a). 
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FIG. 2. Digital orrery, P = N: Ring; List 2(b). 

This particular parallel implementation of the N-body algo- 
rithm has been referred to as the “digital orrery” in [4], 
which describes a hardware implementation of the algo- 
rithm. The name makes allusion to an apparatus for 
representing the motions and phases of the planets and 
moons in the solar system. A different drawing of the same 
process is given in Fig. 2b. If we have 2N processors the 
computation takes place on two rings of processors each of 
which passes its data only N/2 times. This case is shown in 
Fig. 3. More generally, if we have MN processors, then we 
use A4 rings of N processors each. At each computation step, 
MN interactions are computed, and N/M steps with cyclic 

Processors - 

=mory F-1 p2 . . . P”4 P” 

I 

“1 “2 l l * 
“XL “ ”  

2 =+1 l l * “n-1 “n static 

Roassors - 

Replicated Ormy: P = 2N 
Cycle through N/2 shifts 

FIG. 3. Replicated orrery, P = 2N. 

message passing of the data are required to compute the N2 
interactions. 

An efficient processor topology comes from mapping 
these replicated orreries onto a three-dimensional cube of 
processors, as observed in [25]. The dimensions of this 
cube of processors can be easily changed to accommodate a 
family of parallel N-body solvers, where the number of pro- 
cessors ranges from N to N2. In particular, if we have MN 
processors, the solver runs in O(N/M) + O(log M) time 
assuming that only O(log M) communications are needed 
to sum the contents of M processors. The latter is true, for 
example, if the cube is embedded in a larger dimensional 
hypercube, which is exactly the case for a Connection 
Machine computer. This gives us the correct complexity 
bounds for the extremes, i.e., when M= 1 we obtain O(N) 
and for M = N we obtain 0( 1) + O(log N). Let us point out 
another view of the complexity of the algorithm. Note that 
NM= P, where P is the number of processors. In fact it 
is P that is usually fixed, given some particular piece of 
hardware. In terms of P, the complexity bound is 
O(N ‘/P) + O(log P/N). Since N 6 P < N2 for the lieldwise 
model of the CM-2 (see (Appendix A), the former notation 
is appropriate. 

The cube data mapping is critical to the code since the 
ratio of vortices to processors is dynamic; the number of 
vortices increases as they are shed from the boundary into 
the interior of the domain and decreases as they exit the 
domain through outlets. We can take advantage of the 
ability to dynamically reconfigure the CM-2 as three- 
dimensional grids of varying sizes. Thus, the dimensions of 
the three-dimensional cube change in response to the 
changing number of vortex bodies. Moreover, this model 
facilitates porting the code to different sizes of CM-2s. 
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Through its virtual processor mechanism, the CM-2 allows 
the user to transparently emulate a machine with many 
more processors than are physically present. 

In configuring the CM-2 as k-dimensional grids, we are 
required to restrict the lengths in each dimension to a power 
of 2. Thus, the data mapping of the replicated orrery onto 
a three-dimensional grid proceeds as follows. Pick n such 
that 2” is the first power of 2 greater than or equal to N. 
Then we will actually use an orrery of size 2” with only N 
valid entries. We are assuming that N < P d N2, so we can 
write P = 2”+“‘, where M < n. We will want to replicate the 
orrery A4 = 2” times. We configure a 2”+ m processor CM-2 
as an 2”-” by 2” by 2” cube (N/M by M by M). This con- 
figuration allows us to use versions of the parallel prefix 
scan operations (Appendix A) to spread or accumulate data 
along any of the three coordinate directions in logarithmic 
time and ensures the correct wrap-around for grid com- 
munications. The cube mapping, complete with sends, 
spreads, and accumulates, is drawn in Fig. 4. 

There will be two copies of the data for each body, one 
dynamic and one static. The static data is initially resident 
on the front face of the cube. It is sent to the top of the cube 
by a low density send. The data on the front face is spread 
back along the y-dimension of the cube, and the data on top 
is spread down along the z-dimension of the cube. The data 
is now distributed through the cube so that each plane 
parallel to the xz-axis contains a copy of the orrery. The 
computation now proceeds by computing a pairwise inter- 
action according to the relevant force law and doing a one- 
dimensional wrap-around NEWS communication along the 

/ 

/ 

5 

N=mmberofbodks 

M = number of replications 
P = NM = number of pmassms 

FIG. 4. Cube data mapping. 

x-axis. This process is repeated 2”-” times until all N2 
pairwise interactions have been completed. Now the con- 
tributing forces for each individual body are accumulated 
by doing a plus-scan along the y-axis back to the front face 
of the cube. 

Because of the power of two restrictions noted above, the 
time required to do the computation for any value of N 
between 2” and 2” + ’ - 1 is the same. As N increases above 
the next power of 2, we can reconfigure the grid to the 
appropriate size. 

IV. The Poisson Solver 

A method to solve Poisson’s equation is required at two 
stages in the vortex method: first, to compute the potential 
flow which by superposition with the vorticity-induced 
velocity field satisfies the no-flow condition, and second, as 
part of a vortex-in-cell calculation to compute the stream 
function for display purposes. Given the configuration of 
the processors in a two-dimensional grid covering the com- 
pute region, we have chosen an iterative technique to solve 
Poisson’s equation because of the efficiency of the nearest 
neighbor stencil update on a parallel machine. Since each 
update is executed in parallel, the operation count is equiva- 
lent to the number of iterations required for convergence. In 
addition, an excellent starting guess for the iteration comes 
from the converged solution at the previous time step. We 
use overrelaxation with red-black ordering and Chebyschev 
acceleration. 

In more detail, we wish to solve the equation 

V'*=f (IV.1) 

with the boundary conditions d$/dn given on walls. We 
assume that we are in a geometry such that each section of 
the boundary lies on grid points and is parallel to either the 
x or y axis. We assume that bx, j, by,, are given everywhere, 
where bx,, and by, j are defined by the inward normal n at 
boundaries, namely ( bxi,, , by, j) = n. By convention, n is set 
equal to (0,O) in the interior of the flow. We write the 
live-point Laplacian to approximate Eq. (VII. 1 ), namely, 

~i+l,,+~,-1.,+iCj+l+~i.,-l+(-4)*i.j=/, (1~2) 

h2 ‘,,I’ 

Our goal is to formulate this expression for both the interior 
and the boundary in terms of a linear system of equations 

ah+ 1.j + W- I,]+ dt,,+ 1 + d$i,j- 1 + e$i,j= gi.j. (IV.3) 

In the interior, all points in the five-point stencil exist, and 
we may simply write 

(l)rc/i+I,j+(l)lLi-1,,+(l)~i,j+cl 

+ (1)  $i,j-I + t-4) $i,j=h2h,j. (IV.4) 
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For wall points that are not corners, we use the Neumann 
boundary conditions to create points outside the domain, 
since we do not have values for $-i,,, *M-t ,, j, I,+;, -i, 
*i,N+ 1. As an example, consider the left wall, that is, where 
(bx, by) = (l,O). Let given, be the normal derivative of $ in 
the positive x-direction. Then we may create a virtual point 
just outside the boundary by noting that 

*l,j-*-l,j=given . 

2h x3 

thus we have that 

Substituting into Eq. (VII.4) for II/ _ i, jr we have 

~i+l,j+~i+l,j-(2h)giuen, 
+~i,j+l+~i,j-l+(-4)*i,j =f 

h2 
> , (IV.5) ,j. 

We then rewrite Eq. (VII.5) in the standard form as 

toI *i+ 1, j +(2)l//i~I,j+(1)~i,j+l+(1)~i.j~1 

+ (-4) t+bi,j=h2fii,j+ (2h)giuen,. (IV.6) 

Similar expansions hold for the other walls. In the case of 
outward corners, we create virtual points in both directions 
using the Neumann boundary conditions. In the case of 
inward corners, all points of the stencil exist, and we may 
use the usual five-point Laplacian. 

Next, we symmetrize the resulting system by multiplying 
each equation by the scale factor sfi, j defined by: 

Sfi,j= $9 

1 

1, in the interior 
on walls and inward corners 

1 
5, on outward corners. 

The linear system Ax = h, thus defined by 

ati,+ l,j + f$- l,j + 4i,j+ 1 + dtii,j- I + elC/i,j= g,, (IV.7) 

where 

a = (1 + bxJ Sfj,j, b  = (l -  bXi, j) &,J, 

c = (l + b.Yi,j) sfii, jr d= (1 -  &v,~) s&j, 

e=(F4)Sfi,j, 

gi,j= C(h2fi,j) + (2h)(bxi,j) given, 

+ (2h)(bi,j)(@en,)l sfi.,, 

is a symmetric linear system and thus has real eigenvalues. 
Finally, we note that the Poisson equation subject to the 
Neumann boundary condition is well-posed only if the 
Neumann compatibility is satisfied, which is equivalent to 
the fact the matrix A is singular, due to the zero eigenvalue 
corresponding to the eigenvector ef = (1, 1, 1, . . . . 1). If we 
multiply both sides of the expression Ax = h by this eigen- 
vector, we obtain that eT .6 = 0, which is the discrete form 
of the Neumann compatibility condition. In a discrete 
approximation using a finite number of grid points, the 
resulting system may fail to satisfy this condition. In order 
to make this problem well-posed numerically, we must 
enforce this requirement. We do so by projecting out of the 
null-space by defining a new vettor 6 = h - [e: . h/le,l ] e:. 
Then the linear system Ax = b is a symmetric banded 
diagonal system satisfying the discrete Neumann com- 
patibility condition. 

We solve this system by red-black overrelaxation with 
Chebyschev acceleration. The relaxation factor is deter- 
mined by the spectral radius. For a square matrix represent- 
ing a square geometry, there are explicit formula for the 
radius. However, in our case we allow arbitrary input of 
rectilinear geometries as part of the user input. Thus, we 
determine the relaxation factor w as follows. Once the initial 
matrix is built, we perform a set of initialization trials to 
determine o. We calculate the number of iterations required 
for convergence as a function of possible values for o and 
use a method of bisection to determine the optimal choice. 
Since this experiment need be performed only once per 
input geometry, the faster convergence is well worth the 
time spent determining a suitable value for o. 

PART THREE: THE PARALLEL IMPLEMENTATION 
OF VORTEX METHODS 

V. Algorithm Flow 

In this section, we describe the assembly of the various 
pieces of the vortex algorithm. After the particular flow 
geometry has been initialized, imagine that at time n dt, we 
have a collection of vortex elements, both within the 
numerical boundary layer and in the interior. To obtain the 
new position of vortex elements, we must: 

Step 1. Use the N-body solver to compute the vorticity 
field II,,, induced by the vortex blobs. 

Step 2. Use the potential solver to compute the 
potential field upot . 

Step 3. Use the N-body solver to compute the velocity 
field induced by vortex sheets. 

Step 4. Create new vortex sheets to satisfy the no-slip 
condition. 

Step 5. Move all vortex elements. 
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Step 6. Trade elements across the numerical boundary 
layer. 

Step 7. Eliminate vortex elements that leave the 
domain. 

Step 8. Return to Step 1. 

An efficient parallel implementation requires the appro- 
priate processor configuration at each step of the 
algorithm. Figure 5 shows the algorithm flow together with 
the processor configuration for each stage of the process. 
The details of the data flow are given below. 

Let 6 be the size of the boundary layer. Suppose we are at 
time step n with the following objects in the domain of the 
flow: 

(1) Nblobs vortex blobs located more than a distance 6 
away from any wall, in whatever positions they end up. 
Each blob is specified by its x and y coordinates and 
circulation Cblob. 

(2 1 Nsheets vortex sheets located within 6 of a solid wall. 
Each sheet is specified by its x and y coordinates and 
strength 5, as well as a vector (bxsheet, bysheet) labeling which 
wall is closest. 

(3) A collection of boundary probe objects Nprobe,,,,, 
with circulation C b,ob = 0, located at the intersection of the 
Laplace grid and aD. 

(4 ) Ncreate stations located at intervals along the solid 
walls, where vortex sheets are created to satisfy the no-slip 
condition. The location of each of these objects is fixed at 
the beginning of the calculation. At the beginning of every 
time step, each is given strength 5 = 0, and vector 
(bx sheet 9 @sheet) according to the type of wall on which it 
resides. 

(5) A collection of Nprobecdg, edge probes, located a 
distance edge in from the solid walls. The location of each of 
these objects is fixed at the beginning of the calculation. At 
the beginning of each time step, each is given strength 5 = 0, 
and a vector (bxsheet, bysheet) according to the type of wall 
on which it resides. 

Figure 6 shows the data elements in the domain. The 
algorithm moves from time step n to time step n + 1 as 
follows: 

(1) Pass to the N-body solver the collection of vortices 
N blobs 3 as well as the dummy vortices Nprobe,,,, and the Initial.ixeGeunetry ---- 

step 1 

N-body solver to compute 
U,, for vortices 

------ 
Processors in 3-D grid 

step 2 

Iterative relaxation P&son 
solver for Upoc 

------ 
Processors in 2-D pid 

4 

step 7 

Garbage collect 

------ 
Processors in 1-D grid 

A 

step 3 

N-body solver to compute 
u for sheets 

------ 
Processors in 3-D grid 

step 6 step 5 
7 

step 4 

Exchange vortex Move vortex elements 
, 

sheets/blobs: climinatc under v&cities to obtain Create new vortex sheets 
outflow elements C-- positionsattimc(n+l)At + to satisfy neslip 

---e-e m----w me---- 
Processors in 2-D grid Ptocessors in 1-D grid Processon in 2-D grid 

FIG. 5. Complete vortex algorithm and processor communications. 

step 0 

Vortex elements at 
timemit 

------ 
Proassors in 2-D grid 
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J . = Vortex blobs 

- = vortex sheets 

FIG. 6. Data elements probe points. 

points Nprobeedge. Using the N-body solver, find the u,,, (6) Move all vortex elements with Euler’s method 
and Q,, velocities for each of objects, using the vortex blob according to their u and u velocities, adding a random step. 
force law described below. In the case of the sheets, suppress the component of the 

(2) Using the normal velocities at the boundary points 
Nprobe,,,,, solve by successive overrelaxation for the poten- 
tial function at all the grid points. Using central differences, 
compute upot and vpot at all the grid points. Using linear 
interpolation, compute velocities at the objects Nblobs, 
Nprobewall, Nprokdg,. 

(3) Give the objects Nprobecdg, strengths equal to their 
velocity component in the direction tangent to the wall that 
owns them. 

(4) Pass to the N-body solver the points Nsbeet, 

Nprokdge 9 Ncreate j and compute u and v for each of these, 
using the vortex sheet force law described below. 

random step in the direction tangential to the wall. 
(7) Convert sheets that have moved into the interior 

into blobs. Convert blobs that have moved into the 
boundary layer into sheets, with appropriate flags. Reflect 
sheets that have gone out of bounds. Eliminate sheets and 
blobs that have exited through the orifices. 

(8) Return to step one. 

We assume that the inward-pointing vectors (bxi,j, by,,i) 
are defined everywhere, with the convention that 
(bxi,j, by, j) is zero in the interior. In addition, we have 
P owx and flow,, which are the prescribed inlet/outlet 
velocities at the boundaries. These are non-zero only where 
the boundary is open far an inlet/outlet. 

(5) Create new real sheets (that is, add to the list of 
sheets) at the points N,,,,,, with strength equal to the Computation of Velocities Induced by Vortices 

negative of the velocity component tangential to wall. Set We pass the elements Nblobs and Nprobe,,,,s to the 
both the u and u velocity of these newly created sheets to N-body solver to compute the induced velocities 
zero. (u blob k? ublob k), and velocities (uboundary k? ~bou,&ry k). Here, 
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we pass all the elements at once. The force law between the neighboring cell velocities. Then the total velocity for each 
elements is vortex k is thus given by 

(%hf> Yk), Vk(% Y/c)) 

= c 
I = all blobs and probe stations 

i 

c, 

( 

2n[max( (x, - xk)’ 
+ (Y,- Yd2h 0’1 ,! 

x ((Y,-Y!f), 4x,-x!f)). (V.1) 

(U blob tot&? Vblobtotalk) = (Ublobc? ublobk) + (Uinterpk? uinterpk). 

(4.3) 

This gives the velocity components for each vortex blob. 

Boundary Layer 

Here, we have dropped the subscripts blobs and boundary to 
indicate that we do not distinguish between the two in the 
N-body force law calculation. On exiting from the N-body 
solver, we have computed the velocity induced by all the 
vortices at all vortex blobs and boundary points. 

Addition of Potential Flow 

Given a region D, we require that u ‘n = 0 on the 
boundary aD, where n is the inward normal vector. If the 
domain D is not closed but has inlets and outlets, we must 
simply add the inflow/outflow boundary conditions at these 
orifices to the negative of the vortex induced flow. We pass 
to the Poisson solver the problem V2q5=0 subject to the 
Neumann boundary conditions 

Our strategy in the boundary is to send all the elements 
to the N-body solver at once. A single force law is devised 
so that sheets lying on different walls do not interact. 
Imagine that at time step n we have Nsheets sheets located in 
the boundary layer. Each of these sheets 1 d k < Nsheets is 
described by a position (xsheetk, ysheett), a strength rsheetk, 
and an orientation vector (bxsheetk, bysheetk). For the pur- 
poses of this discussion, we label sheets in the boundary 
layer as red sheets. (At the first step, there are no sheets in 
the boundary layer. The construction below will create 
sheets.) 

We begin by creating two additional types of sheet: 

4’ boundary, 

dnboundaryk 

(Ibx boundaryk 1~ hboundaryk 1 ). (V.2) 

(a) Blue sheets. These are sheets that represent the flow 
at infinity as seen from the boundary layer. We create a set 
of stations parallel to the walls and in a distance edge. 
(In the notation of Section IV.B, these are the points 
NprObeed,,.) At each of these points (xpro,,ek, ypro,&, 1 d 
k d NprObeedge, we create a vortex sheet, assigned the color 
blue, with strength given by the tangential velocity com- 
puted from the velocity induced by the vortex blobs plus the 
potential flow velocity. The sheets are given the orientation 
vector Wsbeetk 7 bsbeeY 1 corresponding to the wall which 

Here, we employ a slight abuse of notation, namely that 
n boundaryt is taken as the normal pointing in only non- 
negative directions, not the inward pointing normal. This 
allows us to plug directly into the giuen, and given,” notion 
of the Poisson solver described earlier. In addition, we have 
used the subscript boundaryt to indicate boundary points. 
Finally,flow - value is zero at solid walls and the prescribed 
profile at the given orifice. There is a mapping from the 
one-dimensional description of the list of boundary points 
to the two-dimensional Laplace geometry which gives the 
two-dimensional grid coordinates (i, j). 

owns them. Their contribution in the force law represents 
the velocity as seen at infinity. 

On output, the Poisson solver will return the value of the 
potential function 4. We calculate the potential velocities on 
the grid, namely (upO, _ grid,,, up,,, _ gridy) ‘by Central differen- 
ces, with one-sided differences on the boundary points. 
Once again, we build coefficient masks to handle the 
boundary conditions in parallel, similar to those used in the 
linear system obtained from the Laplace operator. Finally, 
we must interpolate this potential velocity back to the 
vortices. Given a vortex blob located at (xblobk, y&&), let 
tUinterpk, vinterpk ) be the potential velocity at (x&b,,, yb,&,,), 
obtained through bilinear interpolation among the four 

(b) Black sheets. These are sheets that collect the total 
tangential flow along the boundary. We create a set of 
stations along the walls at points (xwallk, ywa14). (In the 
notation of Section IV.B, these are the points Nprobe,,,,.) 
At each of these points, we create a vortex sheet, assigned 
the color black, with zero strength. The sheets are given the 
orientation vector (bxsheetk, bysheetk) corresponding to the 
wall which owns them. These sheets will enter into the force 
law calculation and exit that calculation with the amount of 
vorticity that must be created in order to satisfy the no-slip 
condition. 

Thus, as input to the boundary layer algorithm, we have 
a collection of vortex sheets characterized by positions 
c&be.%5 Ys~~eet~), strengths tsbeetk> and orientation vectors 

++, bysheetk). (The colors of the various sheets are not 
relevant during the pass to the N-body solver). 

Pass to N-Body Solver 

Our goal is to determine the velocity at each of these 
sheets induced by all others. That is, we wish to find the 
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ve1ocity (&heett? “,heetk ) for each sheet. In order to do so, we 
note that the sheets have different orientations. The delini- 
tion of normal (perpendicular to the sheet segment) and 
tangential (along the sheet segment) motion depend on the 
sheet. In order to use the same force law, we must transform 
into a uniform coordinate system. This may be done by 
means of the orientation VeCtOrS (bxsheetk, hysheetk). The height 
N sheetk in the normal direction (away from the wall) is given 
by 

T sheett = tXsheetk 7 Ysheetk) ’ &heett 9 

N sheetl, = lx sheetk 9 Ysheetk) ’ %heeta > 
(V.4) 

where the tangential vector f^sheeti and the normal vector 
ii She% are given by 

kheetk = ( - bsheetk 9 bXsheetk), 

ri sheetk = (bXsheeti 3 bsheetk 1. 
(V.5) 

The normal and tangential velocities, that is, 
( Utansheetky Unorsheetk)~ may be determined from the force 
law according to Eqs. (1.4), (1.5) as 

A. The tangential velocity. U,,,: = C,“= 1 lsheet, [A ] [B] 
[C] [D], where 

1 Tsheetk - Tsheet, 1 
h 

B = ; ( 1 + &n(~,,,,t, - Nsheetk)) 1 
c = [I (bXsheetk) bsheet,,) ’ @Xsheet,, bsh,,t,)i 1 

x f (1 + sign(bx,&.t, - bx sheet,,,] 

’ tj (l + Sign(bysheet, - b sheet,,,] 

D = i (1 - skn(N,t,,,t, - Nsheetk - 2&e)) . 1 
This expression represents the tangential velocity as given 

in Eq. (III.1 ). While somewhat complicated, this expression 
contains all the interactions: 

(a) The first term [A] linearly interpolates the effect of 
the vorticity of sheet j on sheet k, with the effect ranging 
from 0 (none of sheet j covers sheet k) to 1 (all of sheet j 
covers sheet k). 

(b) The second term [B] allows only those sheets 
above sheet k to contribute to the velocity of sheet k. 

(c) The third term [C] makes sure that sheets corre- 
sponding to different walls do not interact. 

(d) The fourth term [D] makes sure that those sheets 
located more than twice the boundary layer size away from 
sheet k in the normal direction do not contribute. This is 
necessary so that in complicated geometries the sheets on 
two different walls with the same orientation vector do not 
interact. 

B. The normal velocity. U,,,: = c,“= , rsheet, [A] [B ] 
[C] [D], where here 

A = CmMN,heet,, Nsheett)l 

1 Tsheett + h/2 - Tstreet, I 
h 

-max o, l-IT~h”t~-h~-I;,.,,l)] ( 
c = [I (bXsheet@ bsheetk) ’ @Xsheet,r bkheet,)i 1 

X 
[ 

; (1 + sgn(bxsheet, - bx sheet,,,] 

X 
[ 

; ( 1 + %‘n(bYsheet, - by sheet,,,] 

D = 
[ 

; (1 - W(‘%eet, - Nstteetk - 2&e)) 1 
The expression represents the vortex interaction given in 
Eq. (1.5): 

(a) The first term [A] places an upper bound on the 
sheet interaction: only 

(b) The second term [B] uses the tangential velocity in 
a centered difference approximation to the derivative 
around the point ( Tsheetk 3 Nst,eetk). 

(c) The third term [C] makes sure that sheets corre- 
sponding to different walls do not interact. 

(d) The fourth term [D] makes sure that those sheets 
located more than twice the boundary layer size away from 
sheet k in the normal direction do not contribute. This is 
necessary so that, in complicated geometries, sheets on two 
different walls with the same orientation vector do not 
interact. 

We compute the above velocities above by passing to the 
N-body solver. 

Creation of Vortex Sheets at Boundary 

Given the above, we calculate the actual velocities of 
the vortex sheets in the x-y coordinate system of the 
two-dimensional grid by transforming back, that is, 

u sheetk = ( Utansheetk2 Unorsheetk) ’ isheetaT 

V sheetk = (U%heetr-? Unorsheetk) . %heeti. 
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Finally, we must create vortex sheets to satisfy the no-slip 
condition. The velocities of the red sheets are as given 
above. The velocities of the black sheets are ignored. At the 
same time, at each of the stations iVp&ewa,,, where there is 
a black sheet, we create a red sheet with the same position, 
same orientation vector, and same strength given by 
- Utansh,,,, , where Utansheetk is as found above. In practice, 
we break each newly created red sheet into a user-specified 
number of red sheets. 

Updating Vortex Positions 

We now have velocities for each of the vortex elements. 
That is, for blobs k = 1, Nblobs, we have positions 
(x blob k, yblob k) and velocities tublob k, Ublob k). For sheets 

k = 1, Nsheets, we have POSitiOnS (xsheetk, Ysheetk) and 
velocities tush&k? %heet k)? as well as orientation vectors 
(bx she&k 3 bysbeetk ). In addition to advection of the vortex ele- 
ment according to the velocity field, a random step is super- 
imposed on the motion (see Section II). This diffusion step 
is a random variable drawn from a Gaussian distribution 
with mean zero and variance 2At/R, where, again, R is the 
Reynolds number and At is the time step. In the boundary 
layer, the random step is taken only in the direction normal 
to the wall. Thus, we update the positions of the vortex 
elements according to 

(x n+l ?I+1 
blob k’ Yblob k 1 

= 
(Xnblohkr Ynblobk)+Af(Unb,obk, U”b,obk)+(~l, 12) 

(V.8) 

(x 
n+l II+1 
sheet k 3 Y 1 sheet k 

= 
(x:heet k, Y:heet k) 

+ At(u:heet k, ‘:heet k) 

+ (b%,eetV,, bysheetd (V.9) 

where (q,, q2) are random variables each drawn from a 
Gaussian distribution with mean zero and variance 2AtlR. 

Exchange Sheets and Blobs, Sheet Reflection, and 
Removing Blobs Outside the Domain 

After the vortex elements (sheets + blobs) have moved, 
their positions are checked: 

(1) If any vortex blobs left the domain, eliminate them. 
(2) If any vortex sheets left the domain, reflect them 

back in. 
(3) If any vortex blobs entered the boundary layer, 

transform them to sheets. 
(4) If any vortex sheets left the boundary layer, trans- 

form to sheets. 

In order to determine which of the above choices is 
appropriate, we must determine the location of the vortex 

element after the update. This may be done in parallel by 
using the signed distances described in Section V.B. As 
described there, the location is determined by using the 
signed distance variable for the processor associated with 
the cell containing the vortex element. The distance is then 
used to determine which of the above tests should be 
executed. The complete specification of the signed distance 
flag and the parallel execution of the above tests is described 
in excruciating detail in [34]. Finally, we perform garbage 
collection to remove the holes in the arrays. 

VI. Display 

To display the results, we use a real-time visualization 
environment [32] to analyze the results of the computa- 
tion. Starting from a precomputed discrete set of time- 
dependent flow quantities, such as velocity and density, this 
environment allows the user to interactively examine the 
data on a framebuffer using animated flow visualization 
diagnostics, such as tracer particles and dye injection, that 
mimic those in the experimental laboratory. As input, we 
perform a stream function vortex-in-cell calculation to 
obtain the velocity field on a grid. On an 8,192 processor 
CM-2, images are updated on the framebuffer at nine frames 
per second, producing essentially real-time motion and 
an effective way to study the solution, analyze fluid 
flow mechanisms, and compare numerical results with 
experiment. For details, see [ 321. 

VII. Timings 

In this section we analyze the efficiency of the two main 
kernels of the code, the N-body solver and the iterative 
Poisson solver. 

In order to give accurate timings for the N-body kernel of 
the vortex code, we extracted that portion of the code and 
ran simulations of the interaction of point vortices in two 
dimensions. This code was written using a test kernel writ- 
ten in *LISP. The runs were made on two CM-2 conligura- 
tions, 4K and SK, with varying numbers of particles. We list 
the timings for the replicated orrery algorithm in Table I. P 
is the number of processors, N is the number of bodies, and 
M is the number of times the orrery was replicated. T is the 

TABLE I 

Timings for N-body Kernel 

P N M T T cmnm 

SK 2048 4 0.33 0.1 
4096 2 1.30 0.37 
8192 1 5.1 1.48 

4K 2048 2 0.63 0.19 
4096 1 2.5 0.76 
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FIG. 7. Expanding/contracting nozzle. 
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FIGURE ‘I-Continued 
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total time, in seconds, to compute all N* interactions, and expansion. After some distance, the channel suddenly 
T comm is just the time spent in communications. contracts, and flow exits on the right. 

Note that in all cases, the communications account for We took a uniform entrance and exit profile of unit speed, 
about 30% of the total running time for the algorithm. As and the domain is inscribed in a box of side length unity. 
we described previously, the complexity of the replicated The Reynolds number is 5000, and the time step is dt = 
orrery algorithm is U(N/M) + O(log M). In the cases run 0.025. We chose a minimum sheet strength of 0.025 and 
above, the O(N/M) term dominates. Note that, in fact, we solved the Poisson equation on a 128 x 128 grid. 
see the correct behavior as N increases for a fixed number The flow portrait is as follows: As t = 0, the no-slip condi- 
of processors. For example, for P = 8K, the times for. tion is instantaneously imposed, revealing the charac- 
N = 2048,4096,8192 should vary as 1,4, 16, which they do. teristics of startup. The flow entering from the left is 

visualized using a hydrogen bubble wire (Fig. 7a), stretched 
vertically across the entrance. As the flow enters the expan- 
sion section, the development of large, counterrotating fluid 
structures in the upper and lower corners pull the flow 
around and back into the “arms” of the domain (Fig. 7b). 
At later times, (Fig. 7c), two large, counterrotating eddies 
occupy the arms, effectively shunting off these sections of the 
domain and turning the domain into a constant width 
channel. Note that the flow itself has changed the effective 
geometry of the domain. The majority of the flow now 
entering from the left cannot tell the difference between this 
“blocked” flow and flow in a straight channel. There is little 
mixing between the central channel and the arms when 
compared to initial times. Finally, at still later times, 
(Fig. 7d), the counterroting eddy in each arm has moved to 
the right and is joined by an opposite moving eddy trapped 
in the upper and lower left corners. This final configuration 
remains essentially fixed for the rest of the calculation. 

A factor of 2-5 improvement in performance for the same 
configuration and a similar number of bodies can be 
obtained by using the multi-wire orrery described in 
Appendix B. Using this approach, as the number of bodies 
grows, for a fixed number of processors, the percentage of 
time spent in communications decreases to less than 1%. 
We are in the process of implementing this improved kernel 
in our general code. 

Next, we analyze the iterative Poisson solvers. After the 
two-dimensional *LISP implementation was complete, we 
began a CM Fortran version of the code, which will take 
advantage of the slicewise compiler. At the time this article 
went to press, the elliptic Fortran kernels were complete. All 
of the timings below for the iterative Poisson solver refer to 
this elliptic solver. We give timings for three different 
iterative solvers: (1) SOR, (2) conjugate gradient, and (3) 
preconditioned conjugate gradient to solve the Poisson 
equation. Timings are given as the time per iteration. We 
studied problems on a 256 x 256 mesh of points. Results 
were executed on an 8K machine, giving a virtual processor 
ratio of 8 for the 256 x 256 mesh. We study the timings for 
the SOR algorithm, as well as a conjugate gradient algo- 
rithm and a preconditioned conjugate gradient technique 
implemented in our vortex code. SOR required 0.006783 per 
iteration; conjugate gradient required 0.008653 s, and a pre- 
conditioned conjugate gradient required 0.009072 s. On a 
full machine (64K), these timings should be divided by a 
factor of 8. Convergence was determined by variation in the 
max norm of the residual over one iteration. With a con- 
vergence criteria on 10p4, to compute the potential flow for 
a square with left to right flow, SOR required 1132 itera- 
tions to converge, conjugate gradient (CG) required 335, 
and preconditioned conjugate gradient (PCG) required 
187. With a convergence criterion of 10-5, SOR required 
1795 iterations, CG required 400 iterations, and PCG 
required 363 iterations. On a more complex geometry (the 
valve described later), 10e4 convergence required 3559 
SOR steps, 919 CG steps, and 909 PCG steps. 

PART FOUR: RESULTS 

Expanding/Contracting Nozzle 

We begin with flow in an expanding and contracting 
nozzle. Flow enters from the left, and encounters a sudden 

Flow around an Island 
Next, we compute flow in a fairly complicated domain 

with an interior island (Fig. 8). Flow enters through a 
narrow slit on the left with a uniform profile and 
immediately encounters an island. Around that island on 
the upper right is a narrow exit, past a large, vertical cavity. 

We took a uniform entrance and exit profile of unit speed, 
and the domain is inscribed in a box of side length unity. 
The Reynolds number is 5000, and the time step is 
At = 0.025. We chose a minimum sheet strength of 0.07 and 
solved the Poisson equation on a 256 x 256 grid. The value 
of the sheet-factor was 2, and we used a tolerance criterion 
of lo-* for both the potential solver and the stream function 
solver. After 360 time steps, there were 14,000 vortices and 
5000 sheets. 

In Fig. 8, we placed a hydrogen bubble wire across the left 
entrance. The flow is split around the island and passes 
through the middle constriction, creating counterrotating 
eddies in all the corners. Above the island is a small indenta- 
tion, which produces a small driven cavity problem, 
revealing a counterrotating eddy structure. The large cavity 
remains fairly quiet with minimal acitivity. We suspect that 
this is the result of underresolution; typical wall velocities 
are small relative to the minimum sheet strength, and thus 
few sheets are triggered. 
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FIG. 8. Flow around islands. 

FIG. 9. Flow through CM-2. 
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FIG. 10. Flow through piston/valve. 
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FIGURE 1lGContinued 
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Flow through the Connection Machine CMZ-A 

Next, we model flow through a two-dimensional cross 
section of the Connection Machine CM2-A (see Fig. 9). Air 
enters at the bottom left and right and moves horizontally 
towards the “circuit boards” (the vertical islands in the 
domain). After flowing past the boards, the pathway splits 
and moves down the outer walls, exiting on either side. 

We took a uniform entrance and exit profile of unit speed, 
and the domain is inscribed in a box of side length unity. 
The Reynolds number is 5000, and the time step is 
At = 0.025. We chose a minimum sheet strength of 0.8 and 
solved the Poisson equation on a 256 x 256 grid. The value 
of the sheet-factor was 2, and we used a tolerance criterion 
of lop5 for both the potential solver and the stream function 
solver. After 300 time steps, there were 8000 vortices and 
10,000 sheets. 

The simulation of this flow shows that the two streams 
entering along the bottom from the left and right meet 
below the circuit boards and create a pair of counterrotating 
eddies which turbulize the flow. This turbulized flow enters 
the narrow channels of the circuit boards, with an 
oscillatory profile, exits the top, and forms a pair of large, 
stagnant vortices which effectively narrow the exit orifice. 
Past these eddies, the flow travels down the wall, creating 
counterrotating vortices in each of the corners before exiting 
out the sides. 

Flow around a Piston/Valve 

Finally, we modeled flow around a fixed valve in a piston 
chamber. Flow enters from the left along two inlet streams 
and encounters a quarter-open valve (Fig. 10). On either 
side of the valve opening, the flow encounters a large cham- 
ber with two vertical exits cut on the rightmost wall. We 
took a uniform entrance and exit profile of unit speed, and 
the domain is inscribed in a box of side length unity. The 
Reynolds numbers is 5000, and the time step is At = 0.025. 

After the no-slip condition is instantaneously imposed at 
t = 0, entering flow curls around the valves on either side 
and exits through the slits (Fig. 10a). As the calculation 
progresses, the flow rolls up behind the valves into two large 
eddies which trap considerable fluid and remain as fixed, 
rotating structures behind the valve (Fig. lob, c). This pair 
of eddies serves to narrow the passage around the valve, 
inducing the growth of counterrotating eddies in the top 
and bottom left corners of the main chamber, which further 
restricts the flow around the valve. These coherent fluid 
structures cause further mixing of the internal flow 
(Fig. 10d). 

APPENDIX A: THE CONNECTION 
MACHINE ARCHITECTURE 

Here, we briefly describe the basic design of the Connec- 
tion Machine CM-2. For details, see [ 151. The Connection 

Machine CM-2 is composed of a sequencer and a maximum 
of 65,536 single-bit processing elements. The processors 
run in SIMD (single instruction multiple data) mode, 
with the instruction stream broadcast by the sequencer. 
It is possible to deselect any subset of the processors, so 
that an instruction is only performed by those processors in 
the currently selected set. The sequencer is controlled by 
an external front end machine, usually a SUNTM, 
SYMBOLICSTM Lisp Machine, or VAXTM. 

Each processor has 64K or 256K bits of local RAM, with 
a single high-speed floating point unit for every 32 pro- 
cessors. There are 16 processors on a CM-2 chip and the 
chips are connected in a boolean n-cube topology, e.g., a 
12-cube for a 64K processor machine. The system software 
supports the notion of virtual processors. This allows the 
programmer to implement code with the number of pro- 
cessors appropriate for the application. Virtual processors 
are mapped to physical processors by evenly segmenting the 
memory of the physical processors and time multiplexing 
the physical processors. The virtual processor ratio is the 
number of virtual processors assigned to each physical 
processor by the mapping. In the N-body model, each body 
is assigned to a virtual processor reponsible for computing 
the accumulated forces on the body. 

The CM-2 supports two basic communication 
mechanisms. There is general pointer-based communication 
by which data can be exchanged between the memories of 
different processors as necessary to complete any computa- 
tion. We refer to this as a send. For more structured 
communication patterns, the machine can be efficiently 
configured as a k-dimensional grid; these grids are 
automatically superimposed by the system software onto 
the boolean cube using a multi-dimensional Gray code 
mapping. These communications patterns are periodic in 
each dimension of the grid. Motion of the data, from all 
processors to their nearest grid neighbors is known as a 
NEWS communication. A particularly useful primitive 
available on the Connection Machine computer are 
scans, which combine computations and communications. 
In logarithmic time, these operators allow one to spread 
data through the CM-2, as well as accumulate summands 
(plus-scan) from each processor. 

There are two programming models for the machine. 
Calculations on the machine are performed in two ways. In 
the standard tieldwise model, the storage of a 32-bit word 
would be allocated in 32 consecutive bits of a physical 
processor’s memory. However, when performing floating 
point computations, the data must be transposed before 
being loaded into floating point hardware, thus better 
performance is usually obtained by viewing the processors 
in a slicewise configuration. That is, we consider processing 
nodes on the machine to be the ensemble of a floating 
point unit and the memory of the 32 associated physical 
processors of the CM-2. In this approach, a word is stored 
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in a 32-bit slice across the memories of the 32 processors in 
the node, i.e., one bit per processor. From this viewpoint, a 
64K processor CM-2 becomes 2048 floating point nodes, 
connected as an 11-dimensional hypercube with two com- 
munication channels between connected nodes, instead of 
one. Moreover, this model of the machine meshes efficiently 
with the way in which the floating point units actually 
access data from their associated processors, i.e., in one 
cycle a 32-bit slice across the processors is read into the 
floating point unit. When the original version of this code 
was implemented, the slicewise model was not available 
from high level software. 

Finally, a 1280 x 1024 frame buffer with parallel I/O is 
directly connected to the memory of a Connection Machine. 

APPENDIX B: FURTHER WORK 

Between when this paper was first submitted and the time 
of its acceptance for publication, we began a new implemen- 
tation of the code, taking advantage of the slicewise 
compiler which became accessible from high level Fortran. 
This has led to the work on multi-wire N-body solvers and 
conjugate gradient techniques discussed below. 

Multi-Wire N-Body Solvers 

An alternate N-body solver results from assigning several 
bodies to each floating point node and performing the 
orrery rotation by introducing a multi-wire all-to-all broad- 
cast which makes optimal use of the communication 
bandwidth of the hypercube using “rotated and translated 
Gray codes” described in [22] and summarized below. As 
described in Appendix A, using the slicewise programming 
model, a 65,536 processor CM-2 becomes a 2048 node 
hypercube (d= 11) with 22 communication channels per 
node. A typical vortex calculation for fluid within complex 
geometries generates many thousands of vortex elements 
and thus, in this case, the replicated orrery algorithm is no 
longer appropriate. Instead, we map N/P bodies to each 
node. There are two copies of the data: a static copy 
responsible for accumulating the forces for those bodies and 
a dynamic copy which will circulate through every other 
node of the hypercube so that all N2 interactions are 
performed. The motivation for the algorithm is to have the 
dynamic copy circulate in such a way that we use all of the 
hypercube wires at each communications step. 

The communication pattern is constructed by finding as 
many conflict-free paths as possible leaving a node, visiting 
all others, and returning to its starting point. By translating 
the starting point of each of these paths to every node of the 
hypercube, the data in each node circulates to every other 
one in as short a time as possible. 

More precisely, given a d-dimensional cube, a Gray code 
yields a Hamiltonian cycle through the cube, i.e., a path that 

visits every node of the cube once and returns to its origin 
node. It takes 2d - 1 steps for any such path to traverse 
every node in the cube. From this path we can generate 
d - 1 additional paths by rotating through each dimension 
of the hypercube. We can take these d paths and translate 
them to every node of the hypercube so that the data in each 
node circulates to every other one. The resulting paths are 
timewise edge independent; that is, at each step none of the 
d 2d Hamiltonian cycles traverse the same edge in the same 
direction. We allow edges to be traversed in different 
directions on the same step because the wires of the CM-2 
can be assumed to be bidirectional. 

After each edge of the path is traversed, we perform those 
interactions that depend on the data available in each 
computational node. This eliminates the need to store 
the circulating data. The computational complexity 
of this approach is O(N2/P) in arithmetic and 
O(ceiling(N/2d. 1/2d) . (2d - 1)) in communications. The 
latter estimate derives from the number of steps it takes to 
send N/P data items out of a node on 2d wires times the 
length of the communications path. Further details of the 
multiwire N-body solver based on a slicewise model may be 
found in [ll]. 

Conjugate Gradient Methods for the Elliptic Solvers 

The iterative relaxation solver for the Poisson equation in 
original code can be replaced by a conjugate gradient 
method. In later versions of the code we have done so, and 
examined the potential benefits in both conjugate gradient 
and preconditioned conjugate gradient. As discussed in the 
section on timings, changing to a gradient method substan- 
tially reduced the iteration count. However, beyond 
diagonal preconditioning, we were unable to produce an 
effective preconditioner that works effectively in arbitrary 
geometries. 
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