
JOURNAL OF COMPUTATIONAL PHYSICS 101, 185-206 (1992)

Two-Dimensional, Viscous, Incompressible Flow in
Complex Geometries on a Massively Parallel Processor

J. A. SETHIAN*

Department of Mathematics, University of-California, Berkeley, California 94720

AND

JEAN-PHILIPPE BRUNET, ADAM GREENBERG, AND JILL P. MENROV

Thinking Machines Corporation, Cambridge, Massachusetts 02142

Received July 20, 1990; revised June 17, 1991

We describe the parallel implementation of a numerical method,
known as the random vortex method, for simulating fluid flow in
arbitrary, complex geometries. The code is implemented on the Con-
nection Machine CM-2, a massively parallel processor. The numerical
method is particularly suited for computing complex viscous, incom-
pressible flow across a wide range of flow regimes and characteristics.
In this method, the vorticity of the flow is approximated by a collection
of particles whose positions and strengths induce an underlying flow.
As such, it is a Lagrangian scheme, in which the position of each par-
ticle is affected by all others at each time step. The efficient execution
of this method on the Connection Machine results from a parallel
N-body solver, parallel elliptic solvers, and a parallel data structure for
the adaptive creation of computational elements on the boundary of the
confining region. Using this method, we analyze the generation of large
vortex structures, mixing and shedding under various flow geometries
and inlet/outlet profiles. The data from our simulations are visualized
using the real-time flow visualization environment developed on the
Connection Machine. 0 1992 Academic Press, Inc.

INTRODUCTION

In this paper, we describe the development of a code to
model two-dimensional fluid flow in general geometries.
The random vortex method is used to approximate the
equations of viscous, incompressible flow, and the code
is implemented on the Connection Machine CM-2, a
massively parallel processor with a hypercube interconnec-
tion network. Using this method, we model the solution to
a variety of complex flow problems. We study the genera-
tion of large vortex structures, mixing and shedding in
various flow configurations, and analyze the dependence

* Supported in part by the Applied Mathematics Subprogram of the
Office of Energy Research under Contract DE-AC03-76SFOOO98. This
author also acknowledges the support of the National Science Foundation
and the Sloan Foundation.

of these structures on domain geometry, inlet/outlet
placement, and profiles.

The random vortex method, introduced by Chorin [121,
is a particularly complicated method for computing viscous,
incompressible flow across a wide range of Reynolds
numbers, and can accurately capture the development of
large-scale flow structures in the laminar, transitional, and
turbulent regimes, see [31]. In this method, vorticity is
approximated by a collection of particles whose positions
and strengths induce an underlying flow. As such, it is a
Lagrangian method, in which the position of each particle is
affected by all others at each time step. The data structures
that connect elements are complex, and information is
passed among all elements at each time step. Consequently,
the implementation of this method on a parallel processor is
a challenging task, requiring a careful marriage of architec-
ture and algorithm. At several stages, we have significantly
altered the problem, method of solution, and implementa-
tion to perform efficiently on a massively parallel machine.

Some of the key issues confronted in the design of a
parallel implementation of vortex methods were:

(a) The design of efficient parallel N-body solvers.
(b) Accurate elliptic solvers in highly complex

geometries.
(c) Efficient run-time data mappings between several

processor topologies.
(d) Complex parallel boundary conditions to allow

arbitrary geometries as input.
(e) Parallel real-time flow visualization for interactive

flow diagnostics.

In particular, the implementation of a vortex code
necessitates the solution of both an N-body problem and of

185 0021-9991/92 $5.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

186 SETHIAN ET AL

Poisson’s equation at each time step. The N-body problem
requires the evaluation of a particle-particle interaction
between all pairs of particles, which is accomplished by
means of a “orrery” to cycle through all possible interac-
tions in our parallel environment. The elliptic Poisson
solver is solved using an iterative method and is made
efficient through the use of communication stencils in the
nearest neighbor grid updates. Finally, dynamic recon-
figuration of data in the processors is used as the number of
Lagrangian elements increases and decreases. Additionally,
we employ a real-time visualization environment based
on parallel graphics computations which mimics flow
diagnostic techniques in laboratory apparatus.

We study flow in a variety of configurations, such as flow
in a doubly symmetric step, flow around islands, and flow in
a piston/valve. Our results reveal a collection of fascinating
flow phenomena. We visualize the results of these calcula-
tions using the real-time flow visualization environment
developed on the Connection Machine.

PART ONE: BRIEF OVERVIEW OF
VORTEX METHODS:

LA. Equations of Motion

Vortex methods are attractive techniques for calculating
viscous, incompressible, turbulent flow. The critical flow
quantity in this approach is the oorticity, which is the curl of
the velocity and represents the amount of rotation at a point
in the flow. Instead of an Eulerian finite difference mesh, a
Lagrangian approach is taken in which the initial vorticity
field is discretized into a large number of vortex elements
whose ensuing motion describes the evolution of the flow.

At any time, the velocity of the fluid may be recovered from
the positions and strengths of the vortex elements.

The advantage of this technique is twofold. First, since no
grid is introduced, this Lagrangian approach avoids the
introduction of numerical viscosity which swamps the real
physical viscosity. Second, the method is dynamically adap-
tive: computational elements are naturally clustered in
regions of high vorticity where flow gradients are large and
accuracy is required. As such, vortex methods have proven
to be a powerful technique for modeling much of the
intricate, complex behavior of turbulent flow (see [29]).

The starting point is the voriticity transport equation in
two dimensions for the vorticity vector { = Vxu, namely,

$+(u.v)+2(, u=Oon 6D. (1.1)

In order to “close” Eqn. (I.1), we must recover u from the
vorticity. Given that V. u = 0 and < = Vxu, we know that
there exists a vector function v(x) such that u = Vx\lr and

V2w = -5. Thus, we may write w, and consequently the
velocity u, in terms of c by making use of the fundamental
solution to the Laplace operator V2. Recall that the solution
to this Poisson equation for the stream function is given by
ty(x, t) = s L(x -z) t(z) dz, where L(x) = (- 1/2n) log 1x1.
Since u = Vxv, we have that

u(x, t) = j- K(x -z) t(z) dz, U-2)

where the kernel K is defined by (1/271)((-x2, x,)/lx12).
If we envision the initial condition <(x, 0) as describing

Thus, for two-dimensional flow, the basic idea behind

the vorticity of the particle initially located at x, we may
then ask for the ensuing motion of particles located at all

vortex methods is to discretize in both space and time the

possible starting points. This leads to a Lugrungiun formula-
tion for the particle trajectories, which we now formulate.
Assuming inviscid flow for the moment, we may numerically

initial value problem described by the evolution of a discrete

approximate the Lagrangian formulation by following the
evolution of a discrete number of particles, each carrying

set of particles, Given an initial vorticity distribution

vorticity. Unfortunately, since the kernel is singular, as
particles come close together, they can exert extremely large

((x, 0), we begin by constructing a lattice Ah in R2, with

velocities on each other which can result in numerical

mesh size h. Let jh be the mesh points of /Ih, where j is an

instability. The essential numerical idea, introduced by
Chorin [121, is to replace the singular kernel by a smoother
one, obtained by convolving K with a smoothing function.

ordered pair with integer coefftcients. Then the motion

The original smoothed kernel chosen simply set the radial
velocity inside a given cutoff size 6 to be constant, thus

(Eq. (1.2)) of the set of particles originally located on the

eliminating the singularity. The first convergence proof for

nodes of this lattice may be approximated by

a vortex blob method was given by Hald [20]. Since that
time, a large number of smoothed kernels have been
constructed, providing vortex methods of various orders of
accuracy. For analysis of the various properties of cores, see
[S-lo, 19-21, 261. For the rest of this section, we shall
simply assume that the singular kernel K has been replaced
by an appropriate smoothed kernel K,.

dx~f’ t)= c K6(X(jh, t)
ihEAh

- X(ih, t)) <(X(ih, t), t) h’. (1.3)

Equations (1.3) form a finite system of coupled differential
equations. The time derivative is approximated by a suitable
finite difference operator to provide a complete algorithm

2D VISCOUS INCOMPRESSIBLE FLOW 187

for updating the positions of the particles in time. This
completely specifies the vortex method for inviscid flow.

The extension of vortex methods to viscous flow requires
treatment of the viscous diffusion term l/R V*t in Eq. (I. 1).
We follow the technique introduced in [131 and allow the
vortex elements to undergo a random walk to simulate
viscous diffusion. Thus, to accomplish both advection and
diffusion, we update the positions of the infinite system of
particles by (1) advancing them by their induced velocity
field and (2) adding an appropriately chosen random step.
Details about the random walk approximation to the viscous
term in vortex methods may be found in [13, 16, 17, 301.
Convergence proofs of various aspects of the inviscid and
viscous vortex method may be found in [S-lo, 19-21, 231.

For both inviscid and viscous flow, the addition of the
normal boundary condition is conceptually straight-
forward. Let u,,,(x, t) be the velocity field obtained from the
distribution of vorticity. Given a region D, the normal
boundary condition requires that u . n = 0 on the boundary
dD, where n is the inward normal vector. Suppose we find a
potential flow upot = V4 such that (upot + u,,,) . n = 0 on aD.
Then superposition of the vorticity flow upot with the
potential flow uvor yields a flow which satisfies the normal
boundary conditions by construction and has the same
vorticity (since Vxupot = Vx V4 = 0). Note that this potential
function must be found at every time step. Some possibilities
are conformal maps, the method of images, and fast Poisson
solvers. In the case of complex geometries, considerable
work may be involved in constructing the potential flow.

The addition of the tangential no-slip condition (u . z = 0)
(z is the unit tangent to solid walls) on aD for viscous flow
adds considerable complexity. A thin boundary layer transi-
tion zone must develop between the vanishing tangential
velocity at the wall and the rapidly moving flow away from
the wall. Thus, we must create and release vorticity from the
solid. One technique for doing so was introduced in [131
and described in detail in 11301. Close to solid walls, the full
Navier-Stokes equations are replaced by the Prandtl
boundary layer equations, which are derived under the
assumption that au/ax < au/+, and that diffusion of vor-
ticity occurs mostly in a direction normal to the wall. Thus,
vorticity in the boundary layer is discretized by finite length
vortex sheets. The jump in the iangential velocity across the
sheet determines its strength. Just as for the vortex blobs,
the velocity of each sheet can be constructed by summing
the influence of all sheets located in a narrow neighborhood
nearby. Thus, we may derive a force law for the velocity
induced on a vortex sheet by others (a full derivation may
be found in [34]). Imagine a collection of k vortex sheets,
which are short line segments parallel to the wall across
which the tangential velocity jumps. We define the strength
tk of each sheet k, 1 <k d N, located at (x,, yk), to be the
negative of the tangential velocity above, minus the tangen-
tial velocity below. That is,

581/101/1-13

M% Yk) = -(U'(& Yk) - u-b!0 Y/r))

where the superscript + and - refer to the limit from above
and below, respectively, and u is the velocity tangential to
the solid walls. We represent the velocity as seen at 00 in the
Prandtl boundary layer equations by a line of vortex sheets
at the edge of the boundary layer with strengths at each time
step equal to the current tangential velocity induced by the
interior vortex blobs plus the potential function. Then the
single force law that gives the u component of the velocity at
vortex sheet i, given by all the others in the boundary layer,
is just

u(xi, yi) = 5 tj max(O, 1 - Jxi - x,1/h)
j=l

X (
1 + Sign(Yj - Yi)

1 2 .
(1.4)

Using the incompressibility of the flow, a similar expression
may be derived for the normal component u of the sheet
velocity, namely,

u(xi7 Yi)= -tllh) C Ctj min(Yi, Yj)
all sheets j = 1, N

x max(O, 1 - (xi + h/2 - xi I/h)

-max(O, 1 -Ixi-h/2-x,1/h)]. (1.5)

Finally, in order to satisfy the no-slip condition along the
solid walls, we create sheets at discrete points along the
boundary whose strengths exactly cancel the existing
tangential velocity, satisfying the no-slip condition.
Complete details may be found in [29, 343.

To summarize, at each time step we must:

(1) Calculate two N-body problems (interior and
boundary)

(2) Solve a potential flow for the no-flow condition
(3) Dynamically create vortex elements for the no-slip

boundary condition.

I.B. Implementation

In this section, we outline how the various stages of the
vortex method may be efficiently mapped onto the different
communication patterns of the Connection Machine
CM-2 (for details about the Connection Machine, see
Appendix A). Here, we only note that for structured
communication patterns, the machine processors may be
naturally configured as a k-dimensional grid with nearest
neighbor communications.

To begin, we wish to accommodate arbitrary rectilinear
geometries. Thus, to initialize the geometry and the flow
conditions on input, we configure the processors as a two-

188 SETHIAN ET AL.

dimensional rectangular grid. The bounding confinement
geometry is then drawn on grid lines, with those processors
corresponding to points within the flow geometry being
active. Various flags then determine whether a processor is
located inside the domain, on the boundary, or outside the
domain.

The vortex elements are stored as arrays with the pro-
cessors configured as a one-dimensional grid. The number
of elements in this array can rise and fall as vortex elements
are both created at solid walls and destroyed as they leave
the computational domain. This can leave holes in the array
as processors corresponding to exiting elements are turned
off. To efficiently utilize this array, we perform “garbage
collection” which removes these holes and collapses the list
to include only the active processors.

The N-body problem is solved by a parallel implementa-
tion of the direct method. Thus, we evaluate all possible
pairwise interactions using the exact Biot-Savart force law.
There are several reasons why we chose a direct method,
rather than a fast summation technique, such as local
corrections [5], hierarchical models [3, 71, and multi-pole
techniques [181 for approximating the interaction. First, we
wanted to perform a careful study of the speedup that would
result from a parallel implementation of the direct method,
to provide comparison with a serial implementation.
Second, the interaction between computational elements
in the boundary layer is extremely complex, including
several Heaviside functions and switches, unlike the
straightforward inverse distance force law in the interior.
These switches locate nearby computational elements,
which are the only ones that contribute in the boundary
force law expression. The original boundary layer algorithm
by Chorin [13] evaluated these switches by computing the
distance between all pairs of elements, which is an O(N’)
operation, see [30]. Baden and Puckett [S] perform a bin
mechanisms to efficiently locate nearby elements, but this
becomes intractable for the highly complex geometries
under consideration here. While a multi-pole type expan-
sion might be appropriate for the force law in the interior,
to the best of our knowledge the intricate boundary force
law cannot be easily cast in such a framework. Consequen-
tely, we chose a different approach, namely, to pass all the
computational elements to the N-body solver, and rely on
the efficiency of our parallel N-body solver to calculate the
appropriate interactions. Our solver relies on a replicated
“orrery” to cycle through all the possible interactions. In
this technique, the processors are configured as a three-
dimensional grid, with the location and strength of the vor-
tex elements stored in the memory of the processors on the
front face of this three-dimensional cube. Copies of this data
are then spread to the other processors throughout the cube
in such a way that all vortex-vortex interactions can be
accumulated by nearest neighbor communications through
the depth of the cube. (A different technique for evaluating

the N-nody interaction by means of an all-to-all broadcast
is described in Appendix B.)

Finally, we must solve for the potential flow at each time
step. Of course, a large number of techniques are available
for solving such problems, including direct methods and
conformal maps. Our consideration of arbitrary rectilinear
geometries and massively parallel architectures leads quite
naturally to iterative techniques for three reasons. First,
given highly complex geometries with the possibility of thin
narrow regions, multiple 90” corners and interior islands,
the linear system associated with a finite difference
approach is easy to formulate when compared with image
techniques or conformal maps. Second, the fast nearest
neighbor communication in a parallel setting allows the
simultaneous update of all interior points every step of the
iteration. Finally, while iterative techniques require good
initial guesses, an excellent starting value is provided by the
solution to the potential flow at the previous time step. For
our initial implementation, we chose overrelaxation with
red-black ordering and Chebyschev acceleration. (For an
implementation involving conjugate gradients techniques,
see Appendix B.)

PART TWO: PARALLEL DATA LAYOUT, N-BODY
SOLVERS, AND ELLIPTIC SOLVERS

II. Input: Organization of Input of Arbitrary Geometry
and Flow Conditions

In this section, we describe the organization and data
mappings of the input of arbitrary geometry and flow condi-
tions. We consider the processors of the machine connected
as a two-dimensional grid and label this the “compute
region.” The user may specify any rectilinear geometry,
complete with interior islands, lying on grid lines within the
compute region. The user also specifies the location of inlet
and outlet locations, as well as inflow/outflow profiles. The
setup is shown in Fig. 1.

Our basic plan is as follows. We tag the processors
according to their location relative to the flow geometry
within the compute region. These “processor tags” will be
used in several ways:

(1) The iteration for the Poisson solver is performed
over the entire compute region. However, masks built out of
the processor tags will construct the correct stencil update
at the boundary of the flow geometry. Thus all processors
within the compute region may be updated simultaneously
in parallel, with no special attention applied to boundary
points.

(2) Processsor tags along the boundary are used to
determine the local orientation and interaction of vortex
sheets within the numerical boundary layer.

2D VISCOUS INCOMPRESSIBLE FLOW

ComDute refzion

189

FIG. 1. Relationship between compute region and flow geometry.

(3) Processor tags are used to locate the vortex
elements as they move and determine whether they should
be traded across the numerical boundary layer, reflected
across solid walls, or eliminated as they leave the flow
geometry.

Thus, the processor tags connect the underlying flow
geometry with the moving vortex elements. These tags are
built as follows: First, the processors are tagged corre-
sponding to their location, either interior, boundary, or
exterior. The boundary processors are then divided into
solid wall processors or inlet/outlet processors. Next, all
boundary processors are assigned a unit vector (bx, by)
pointing in the inward normal direction. Next, tags are built
to determine the distance from a processor to the boundary,
to be used in determining the transition point from sheets to
blobs and vice versa. Finally, an input variable (flow-value)
determines whether or not the segment is a solid wall or an
inlet/outlet. If no argument is supplied, then the segment is
a solid wall. If a real number value is prescribed, then the
flow is assumed to be moving through that segment with
velocity vector (flow-u&e 1 bx,, j 1, flow-value 1 byi,i I). Note
that a positive value for “flow-value” means that the fluid is
moving to the right (if by, j = 0), or up (if bxi,j = 0),
independent of whether this motion carries fluid in or out of
the domain.

III. The N-Body Solver

In this section, we describe the implementation of the
N-body solver on the CM-2 parallel architecture. Two calls
to the N-body solver are required: one for the vortex blobs
and one for the vortex sheets. Because the only difference
between the two calls is the particular force law, we focus on
N-body solvers for a general force law.

A direct implementation of an N-body algorithm on a
serial machine requires O(W) operations, since all pairwise
interactions must be computed. At the other extreme,
imagine a parallel computer with N2 processors. In this
case, each processor can perform one of the pairwise inter-
actions, thus all the force interactions can be computed
simultaneously in 0(1) time, and the complexity of the algo-
rithm depends only on the communications involved in
summing over the computed interactions. In a hypercube
interconnection scheme, this can be done in O(log N)
time.

In between these two extremes lies another canonical
case, where one has the same number of processors P as
bodies N. Imagine that N = P processors are connected as a
ring and that processor i accumulates the forces on body i.
At each time step, N of the pairwise interactions are com-
puted, then the appropriate data are passed around the ring
so that in N steps all N2 interactions have been computed
and accumulated into the correct processor (see Fig. 2a).

190 SETHIAN ET AL.

a

Digital Orrery: Ring of Processors
P=N

Cycle through N shirts

b
Fkxcssors -

Memory

I I

p1 % . . . P&l pn

“1 “2 . . . “n-1 “II

shfl 0

shiji 1

Digital Ornery: P = N
Cycle through N shifb

FIG. 2. Digital orrery, P = N: Ring; List 2(b).

This particular parallel implementation of the N-body algo-
rithm has been referred to as the “digital orrery” in [4],
which describes a hardware implementation of the algo-
rithm. The name makes allusion to an apparatus for
representing the motions and phases of the planets and
moons in the solar system. A different drawing of the same
process is given in Fig. 2b. If we have 2N processors the
computation takes place on two rings of processors each of
which passes its data only N/2 times. This case is shown in
Fig. 3. More generally, if we have MN processors, then we
use A4 rings of N processors each. At each computation step,
MN interactions are computed, and N/M steps with cyclic

Processors -

=mory F-1 p2 . . . P”4 P”

I

“1 “2 l l *
“XL “ ”

2 =+1 l l * “n-1 “n static

Roassors -

Replicated Ormy: P = 2N
Cycle through N/2 shifts

FIG. 3. Replicated orrery, P = 2N.

message passing of the data are required to compute the N2
interactions.

An efficient processor topology comes from mapping
these replicated orreries onto a three-dimensional cube of
processors, as observed in [25]. The dimensions of this
cube of processors can be easily changed to accommodate a
family of parallel N-body solvers, where the number of pro-
cessors ranges from N to N2. In particular, if we have MN
processors, the solver runs in O(N/M) + O(log M) time
assuming that only O(log M) communications are needed
to sum the contents of M processors. The latter is true, for
example, if the cube is embedded in a larger dimensional
hypercube, which is exactly the case for a Connection
Machine computer. This gives us the correct complexity
bounds for the extremes, i.e., when M= 1 we obtain O(N)
and for M = N we obtain 0(1) + O(log N). Let us point out
another view of the complexity of the algorithm. Note that
NM= P, where P is the number of processors. In fact it
is P that is usually fixed, given some particular piece of
hardware. In terms of P, the complexity bound is
O(N ‘/P) + O(log P/N). Since N 6 P < N2 for the lieldwise
model of the CM-2 (see (Appendix A), the former notation
is appropriate.

The cube data mapping is critical to the code since the
ratio of vortices to processors is dynamic; the number of
vortices increases as they are shed from the boundary into
the interior of the domain and decreases as they exit the
domain through outlets. We can take advantage of the
ability to dynamically reconfigure the CM-2 as three-
dimensional grids of varying sizes. Thus, the dimensions of
the three-dimensional cube change in response to the
changing number of vortex bodies. Moreover, this model
facilitates porting the code to different sizes of CM-2s.

2D VISCOUS INCOMPRESSIBLE FLOW 191

Through its virtual processor mechanism, the CM-2 allows
the user to transparently emulate a machine with many
more processors than are physically present.

In configuring the CM-2 as k-dimensional grids, we are
required to restrict the lengths in each dimension to a power
of 2. Thus, the data mapping of the replicated orrery onto
a three-dimensional grid proceeds as follows. Pick n such
that 2” is the first power of 2 greater than or equal to N.
Then we will actually use an orrery of size 2” with only N
valid entries. We are assuming that N < P d N2, so we can
write P = 2”+“‘, where M < n. We will want to replicate the
orrery A4 = 2” times. We configure a 2”+ m processor CM-2
as an 2”-” by 2” by 2” cube (N/M by M by M). This con-
figuration allows us to use versions of the parallel prefix
scan operations (Appendix A) to spread or accumulate data
along any of the three coordinate directions in logarithmic
time and ensures the correct wrap-around for grid com-
munications. The cube mapping, complete with sends,
spreads, and accumulates, is drawn in Fig. 4.

There will be two copies of the data for each body, one
dynamic and one static. The static data is initially resident
on the front face of the cube. It is sent to the top of the cube
by a low density send. The data on the front face is spread
back along the y-dimension of the cube, and the data on top
is spread down along the z-dimension of the cube. The data
is now distributed through the cube so that each plane
parallel to the xz-axis contains a copy of the orrery. The
computation now proceeds by computing a pairwise inter-
action according to the relevant force law and doing a one-
dimensional wrap-around NEWS communication along the

/

/

5

N=mmberofbodks

M = number of replications
P = NM = number of pmassms

FIG. 4. Cube data mapping.

x-axis. This process is repeated 2”-” times until all N2
pairwise interactions have been completed. Now the con-
tributing forces for each individual body are accumulated
by doing a plus-scan along the y-axis back to the front face
of the cube.

Because of the power of two restrictions noted above, the
time required to do the computation for any value of N
between 2” and 2” + ’ - 1 is the same. As N increases above
the next power of 2, we can reconfigure the grid to the
appropriate size.

IV. The Poisson Solver

A method to solve Poisson’s equation is required at two
stages in the vortex method: first, to compute the potential
flow which by superposition with the vorticity-induced
velocity field satisfies the no-flow condition, and second, as
part of a vortex-in-cell calculation to compute the stream
function for display purposes. Given the configuration of
the processors in a two-dimensional grid covering the com-
pute region, we have chosen an iterative technique to solve
Poisson’s equation because of the efficiency of the nearest
neighbor stencil update on a parallel machine. Since each
update is executed in parallel, the operation count is equiva-
lent to the number of iterations required for convergence. In
addition, an excellent starting guess for the iteration comes
from the converged solution at the previous time step. We
use overrelaxation with red-black ordering and Chebyschev
acceleration.

In more detail, we wish to solve the equation

V'*=f (IV.1)

with the boundary conditions d$/dn given on walls. We
assume that we are in a geometry such that each section of
the boundary lies on grid points and is parallel to either the
x or y axis. We assume that bx, j, by,, are given everywhere,
where bx,, and by, j are defined by the inward normal n at
boundaries, namely (bxi,, , by, j) = n. By convention, n is set
equal to (0,O) in the interior of the flow. We write the
live-point Laplacian to approximate Eq. (VII. 1), namely,

~i+l,,+~,-1.,+iCj+l+~i.,-l+(-4)*i.j=/, (1~2)

h2 ‘,,I’

Our goal is to formulate this expression for both the interior
and the boundary in terms of a linear system of equations

ah+ 1.j + W- I,]+ dt,,+ 1 + d$i,j- 1 + e$i,j= gi.j. (IV.3)

In the interior, all points in the five-point stencil exist, and
we may simply write

(l)rc/i+I,j+(l)lLi-1,,+(l)~i,j+cl

+ (1) $i,j-I + t-4) $i,j=h2h,j. (IV.4)

192 SETHIAN ET AL.

For wall points that are not corners, we use the Neumann
boundary conditions to create points outside the domain,
since we do not have values for $-i,,, *M-t ,, j, I,+;, -i,
*i,N+ 1. As an example, consider the left wall, that is, where
(bx, by) = (l,O). Let given, be the normal derivative of $ in
the positive x-direction. Then we may create a virtual point
just outside the boundary by noting that

l,j--l,j=given .

2h x3

thus we have that

Substituting into Eq. (VII.4) for II/ _ i, jr we have

~i+l,j+~i+l,j-(2h)giuen,
+~i,j+l+~i,j-l+(-4)*i,j =f

h2
> , (IV.5) ,j.

We then rewrite Eq. (VII.5) in the standard form as

toI *i+ 1, j +(2)l//i~I,j+(1)~i,j+l+(1)~i.j~1

+ (-4) t+bi,j=h2fii,j+ (2h)giuen,. (IV.6)

Similar expansions hold for the other walls. In the case of
outward corners, we create virtual points in both directions
using the Neumann boundary conditions. In the case of
inward corners, all points of the stencil exist, and we may
use the usual five-point Laplacian.

Next, we symmetrize the resulting system by multiplying
each equation by the scale factor sfi, j defined by:

Sfi,j= $9

1

1, in the interior
on walls and inward corners

1
5, on outward corners.

The linear system Ax = h, thus defined by

ati,+ l,j + f$- l,j + 4i,j+ 1 + dtii,j- I + elC/i,j= g,, (IV.7)

where

a = (1 + bxJ Sfj,j, b = (l - bXi, j) &,J,

c = (l + b.Yi,j) sfii, jr d= (1 - &v,~) s&j,

e=(F4)Sfi,j,

gi,j= C(h2fi,j) + (2h)(bxi,j) given,

+ (2h)(bi,j)(@en,)l sfi.,,

is a symmetric linear system and thus has real eigenvalues.
Finally, we note that the Poisson equation subject to the
Neumann boundary condition is well-posed only if the
Neumann compatibility is satisfied, which is equivalent to
the fact the matrix A is singular, due to the zero eigenvalue
corresponding to the eigenvector ef = (1, 1, 1, 1). If we
multiply both sides of the expression Ax = h by this eigen-
vector, we obtain that eT .6 = 0, which is the discrete form
of the Neumann compatibility condition. In a discrete
approximation using a finite number of grid points, the
resulting system may fail to satisfy this condition. In order
to make this problem well-posed numerically, we must
enforce this requirement. We do so by projecting out of the
null-space by defining a new vettor 6 = h - [e: . h/le,l] e:.
Then the linear system Ax = b is a symmetric banded
diagonal system satisfying the discrete Neumann com-
patibility condition.

We solve this system by red-black overrelaxation with
Chebyschev acceleration. The relaxation factor is deter-
mined by the spectral radius. For a square matrix represent-
ing a square geometry, there are explicit formula for the
radius. However, in our case we allow arbitrary input of
rectilinear geometries as part of the user input. Thus, we
determine the relaxation factor w as follows. Once the initial
matrix is built, we perform a set of initialization trials to
determine o. We calculate the number of iterations required
for convergence as a function of possible values for o and
use a method of bisection to determine the optimal choice.
Since this experiment need be performed only once per
input geometry, the faster convergence is well worth the
time spent determining a suitable value for o.

PART THREE: THE PARALLEL IMPLEMENTATION
OF VORTEX METHODS

V. Algorithm Flow

In this section, we describe the assembly of the various
pieces of the vortex algorithm. After the particular flow
geometry has been initialized, imagine that at time n dt, we
have a collection of vortex elements, both within the
numerical boundary layer and in the interior. To obtain the
new position of vortex elements, we must:

Step 1. Use the N-body solver to compute the vorticity
field II,,, induced by the vortex blobs.

Step 2. Use the potential solver to compute the
potential field upot .

Step 3. Use the N-body solver to compute the velocity
field induced by vortex sheets.

Step 4. Create new vortex sheets to satisfy the no-slip
condition.

Step 5. Move all vortex elements.

2D VISCOUS INCOMPRESSIBLE FLOW 193

Step 6. Trade elements across the numerical boundary
layer.

Step 7. Eliminate vortex elements that leave the
domain.

Step 8. Return to Step 1.

An efficient parallel implementation requires the appro-
priate processor configuration at each step of the
algorithm. Figure 5 shows the algorithm flow together with
the processor configuration for each stage of the process.
The details of the data flow are given below.

Let 6 be the size of the boundary layer. Suppose we are at
time step n with the following objects in the domain of the
flow:

(1) Nblobs vortex blobs located more than a distance 6
away from any wall, in whatever positions they end up.
Each blob is specified by its x and y coordinates and
circulation Cblob.

(2 1 Nsheets vortex sheets located within 6 of a solid wall.
Each sheet is specified by its x and y coordinates and
strength 5, as well as a vector (bxsheet, bysheet) labeling which
wall is closest.

(3) A collection of boundary probe objects Nprobe,,,,,
with circulation C b,ob = 0, located at the intersection of the
Laplace grid and aD.

(4) Ncreate stations located at intervals along the solid
walls, where vortex sheets are created to satisfy the no-slip
condition. The location of each of these objects is fixed at
the beginning of the calculation. At the beginning of every
time step, each is given strength 5 = 0, and vector
(bx sheet 9 @sheet) according to the type of wall on which it
resides.

(5) A collection of Nprobecdg, edge probes, located a
distance edge in from the solid walls. The location of each of
these objects is fixed at the beginning of the calculation. At
the beginning of each time step, each is given strength 5 = 0,
and a vector (bxsheet, bysheet) according to the type of wall
on which it resides.

Figure 6 shows the data elements in the domain. The
algorithm moves from time step n to time step n + 1 as
follows:

(1) Pass to the N-body solver the collection of vortices
N blobs 3 as well as the dummy vortices Nprobe,,,, and the Initial.ixeGeunetry ----

step 1

N-body solver to compute
U,, for vortices

Processors in 3-D grid

step 2

Iterative relaxation P&son
solver for Upoc

Processors in 2-D pid

4

step 7

Garbage collect

Processors in 1-D grid

A

step 3

N-body solver to compute
u for sheets

Processors in 3-D grid

step 6 step 5
7

step 4

Exchange vortex Move vortex elements
,

sheets/blobs: climinatc under v&cities to obtain Create new vortex sheets
outflow elements C-- positionsattimc(n+l)At + to satisfy neslip

---e-e m----w me----
Processors in 2-D grid Ptocessors in 1-D grid Processon in 2-D grid

FIG. 5. Complete vortex algorithm and processor communications.

step 0

Vortex elements at
timemit

Proassors in 2-D grid

194 SETHIAN ET AL.

J . = Vortex blobs

- = vortex sheets

FIG. 6. Data elements probe points.

points Nprobeedge. Using the N-body solver, find the u,,, (6) Move all vortex elements with Euler’s method
and Q,, velocities for each of objects, using the vortex blob according to their u and u velocities, adding a random step.
force law described below. In the case of the sheets, suppress the component of the

(2) Using the normal velocities at the boundary points
Nprobe,,,,, solve by successive overrelaxation for the poten-
tial function at all the grid points. Using central differences,
compute upot and vpot at all the grid points. Using linear
interpolation, compute velocities at the objects Nblobs,
Nprobewall, Nprokdg,.

(3) Give the objects Nprobecdg, strengths equal to their
velocity component in the direction tangent to the wall that
owns them.

(4) Pass to the N-body solver the points Nsbeet,

Nprokdge 9 Ncreate j and compute u and v for each of these,
using the vortex sheet force law described below.

random step in the direction tangential to the wall.
(7) Convert sheets that have moved into the interior

into blobs. Convert blobs that have moved into the
boundary layer into sheets, with appropriate flags. Reflect
sheets that have gone out of bounds. Eliminate sheets and
blobs that have exited through the orifices.

(8) Return to step one.

We assume that the inward-pointing vectors (bxi,j, by,,i)
are defined everywhere, with the convention that
(bxi,j, by, j) is zero in the interior. In addition, we have
P owx and flow,, which are the prescribed inlet/outlet
velocities at the boundaries. These are non-zero only where
the boundary is open far an inlet/outlet.

(5) Create new real sheets (that is, add to the list of
sheets) at the points N,,,,,, with strength equal to the Computation of Velocities Induced by Vortices

negative of the velocity component tangential to wall. Set We pass the elements Nblobs and Nprobe,,,,s to the
both the u and u velocity of these newly created sheets to N-body solver to compute the induced velocities
zero. (u blob k? ublob k), and velocities (uboundary k? ~bou,&ry k). Here,

2D VISCOUS INCOMPRESSIBLE FLOW 195

we pass all the elements at once. The force law between the neighboring cell velocities. Then the total velocity for each
elements is vortex k is thus given by

(%hf> Yk), Vk(% Y/c))

= c
I = all blobs and probe stations

i

c,

(

2n[max((x, - xk)’
+ (Y,- Yd2h 0’1 ,!

x ((Y,-Y!f), 4x,-x!f)). (V.1)

(U blob tot&? Vblobtotalk) = (Ublobc? ublobk) + (Uinterpk? uinterpk).

(4.3)

This gives the velocity components for each vortex blob.

Boundary Layer

Here, we have dropped the subscripts blobs and boundary to
indicate that we do not distinguish between the two in the
N-body force law calculation. On exiting from the N-body
solver, we have computed the velocity induced by all the
vortices at all vortex blobs and boundary points.

Addition of Potential Flow

Given a region D, we require that u ‘n = 0 on the
boundary aD, where n is the inward normal vector. If the
domain D is not closed but has inlets and outlets, we must
simply add the inflow/outflow boundary conditions at these
orifices to the negative of the vortex induced flow. We pass
to the Poisson solver the problem V2q5=0 subject to the
Neumann boundary conditions

Our strategy in the boundary is to send all the elements
to the N-body solver at once. A single force law is devised
so that sheets lying on different walls do not interact.
Imagine that at time step n we have Nsheets sheets located in
the boundary layer. Each of these sheets 1 d k < Nsheets is
described by a position (xsheetk, ysheett), a strength rsheetk,
and an orientation vector (bxsheetk, bysheetk). For the pur-
poses of this discussion, we label sheets in the boundary
layer as red sheets. (At the first step, there are no sheets in
the boundary layer. The construction below will create
sheets.)

We begin by creating two additional types of sheet:

4’ boundary,

dnboundaryk

(Ibx boundaryk 1~ hboundaryk 1). (V.2)

(a) Blue sheets. These are sheets that represent the flow
at infinity as seen from the boundary layer. We create a set
of stations parallel to the walls and in a distance edge.
(In the notation of Section IV.B, these are the points
NprObeed,,.) At each of these points (xpro,,ek, ypro,&, 1 d
k d NprObeedge, we create a vortex sheet, assigned the color
blue, with strength given by the tangential velocity com-
puted from the velocity induced by the vortex blobs plus the
potential flow velocity. The sheets are given the orientation
vector Wsbeetk 7 bsbeeY 1 corresponding to the wall which

Here, we employ a slight abuse of notation, namely that
n boundaryt is taken as the normal pointing in only non-
negative directions, not the inward pointing normal. This
allows us to plug directly into the giuen, and given,” notion
of the Poisson solver described earlier. In addition, we have
used the subscript boundaryt to indicate boundary points.
Finally,flow - value is zero at solid walls and the prescribed
profile at the given orifice. There is a mapping from the
one-dimensional description of the list of boundary points
to the two-dimensional Laplace geometry which gives the
two-dimensional grid coordinates (i, j).

owns them. Their contribution in the force law represents
the velocity as seen at infinity.

On output, the Poisson solver will return the value of the
potential function 4. We calculate the potential velocities on
the grid, namely (upO, _ grid,,, up,,, _ gridy) ‘by Central differen-
ces, with one-sided differences on the boundary points.
Once again, we build coefficient masks to handle the
boundary conditions in parallel, similar to those used in the
linear system obtained from the Laplace operator. Finally,
we must interpolate this potential velocity back to the
vortices. Given a vortex blob located at (xblobk, y&&), let
tUinterpk, vinterpk) be the potential velocity at (x&b,,, yb,&,,),
obtained through bilinear interpolation among the four

(b) Black sheets. These are sheets that collect the total
tangential flow along the boundary. We create a set of
stations along the walls at points (xwallk, ywa14). (In the
notation of Section IV.B, these are the points Nprobe,,,,.)
At each of these points, we create a vortex sheet, assigned
the color black, with zero strength. The sheets are given the
orientation vector (bxsheetk, bysheetk) corresponding to the
wall which owns them. These sheets will enter into the force
law calculation and exit that calculation with the amount of
vorticity that must be created in order to satisfy the no-slip
condition.

Thus, as input to the boundary layer algorithm, we have
a collection of vortex sheets characterized by positions
c&be.%5 Ys~~eet~), strengths tsbeetk> and orientation vectors

++, bysheetk). (The colors of the various sheets are not
relevant during the pass to the N-body solver).

Pass to N-Body Solver

Our goal is to determine the velocity at each of these
sheets induced by all others. That is, we wish to find the

196 SETHIAN ET AL.

ve1ocity (&heett? “,heetk) for each sheet. In order to do so, we
note that the sheets have different orientations. The delini-
tion of normal (perpendicular to the sheet segment) and
tangential (along the sheet segment) motion depend on the
sheet. In order to use the same force law, we must transform
into a uniform coordinate system. This may be done by
means of the orientation VeCtOrS (bxsheetk, hysheetk). The height
N sheetk in the normal direction (away from the wall) is given
by

T sheett = tXsheetk 7 Ysheetk) ’ &heett 9

N sheetl, = lx sheetk 9 Ysheetk) ’ %heeta >
(V.4)

where the tangential vector f^sheeti and the normal vector
ii She% are given by

kheetk = (- bsheetk 9 bXsheetk),

ri sheetk = (bXsheeti 3 bsheetk 1.
(V.5)

The normal and tangential velocities, that is,
(Utansheetky Unorsheetk)~ may be determined from the force
law according to Eqs. (1.4), (1.5) as

A. The tangential velocity. U,,,: = C,“= 1 lsheet, [A] [B]
[C] [D], where

1 Tsheetk - Tsheet, 1
h

B = ; (1 + &n(~,,,,t, - Nsheetk)) 1
c = [I (bXsheetk) bsheet,,) ’ @Xsheet,, bsh,,t,)i 1

x f (1 + sign(bx,&.t, - bx sheet,,,]

’ tj (l + Sign(bysheet, - b sheet,,,]

D = i (1 - skn(N,t,,,t, - Nsheetk - 2&e)) . 1
This expression represents the tangential velocity as given

in Eq. (III.1). While somewhat complicated, this expression
contains all the interactions:

(a) The first term [A] linearly interpolates the effect of
the vorticity of sheet j on sheet k, with the effect ranging
from 0 (none of sheet j covers sheet k) to 1 (all of sheet j
covers sheet k).

(b) The second term [B] allows only those sheets
above sheet k to contribute to the velocity of sheet k.

(c) The third term [C] makes sure that sheets corre-
sponding to different walls do not interact.

(d) The fourth term [D] makes sure that those sheets
located more than twice the boundary layer size away from
sheet k in the normal direction do not contribute. This is
necessary so that in complicated geometries the sheets on
two different walls with the same orientation vector do not
interact.

B. The normal velocity. U,,,: = c,“= , rsheet, [A] [B]
[C] [D], where here

A = CmMN,heet,, Nsheett)l

1 Tsheett + h/2 - Tstreet, I
h

-max o, l-IT~h”t~-h~-I;,.,,l)] (
c = [I (bXsheet@ bsheetk) ’ @Xsheet,r bkheet,)i 1

X
[

; (1 + sgn(bxsheet, - bx sheet,,,]

X
[

; (1 + %‘n(bYsheet, - by sheet,,,]

D =
[

; (1 - W(‘%eet, - Nstteetk - 2&e)) 1
The expression represents the vortex interaction given in
Eq. (1.5):

(a) The first term [A] places an upper bound on the
sheet interaction: only

(b) The second term [B] uses the tangential velocity in
a centered difference approximation to the derivative
around the point (Tsheetk 3 Nst,eetk).

(c) The third term [C] makes sure that sheets corre-
sponding to different walls do not interact.

(d) The fourth term [D] makes sure that those sheets
located more than twice the boundary layer size away from
sheet k in the normal direction do not contribute. This is
necessary so that, in complicated geometries, sheets on two
different walls with the same orientation vector do not
interact.

We compute the above velocities above by passing to the
N-body solver.

Creation of Vortex Sheets at Boundary

Given the above, we calculate the actual velocities of
the vortex sheets in the x-y coordinate system of the
two-dimensional grid by transforming back, that is,

u sheetk = (Utansheetk2 Unorsheetk) ’ isheetaT

V sheetk = (U%heetr-? Unorsheetk) . %heeti.

2D VISCOUS INCOMPRESSIBLE FLOW 197

Finally, we must create vortex sheets to satisfy the no-slip
condition. The velocities of the red sheets are as given
above. The velocities of the black sheets are ignored. At the
same time, at each of the stations iVp&ewa,,, where there is
a black sheet, we create a red sheet with the same position,
same orientation vector, and same strength given by
- Utansh,,,, , where Utansheetk is as found above. In practice,
we break each newly created red sheet into a user-specified
number of red sheets.

Updating Vortex Positions

We now have velocities for each of the vortex elements.
That is, for blobs k = 1, Nblobs, we have positions
(x blob k, yblob k) and velocities tublob k, Ublob k). For sheets

k = 1, Nsheets, we have POSitiOnS (xsheetk, Ysheetk) and
velocities tush&k? %heet k)? as well as orientation vectors
(bx she&k 3 bysbeetk). In addition to advection of the vortex ele-
ment according to the velocity field, a random step is super-
imposed on the motion (see Section II). This diffusion step
is a random variable drawn from a Gaussian distribution
with mean zero and variance 2At/R, where, again, R is the
Reynolds number and At is the time step. In the boundary
layer, the random step is taken only in the direction normal
to the wall. Thus, we update the positions of the vortex
elements according to

(x n+l ?I+1
blob k’ Yblob k 1

=
(Xnblohkr Ynblobk)+Af(Unb,obk, U”b,obk)+(~l, 12)

(V.8)

(x
n+l II+1
sheet k 3 Y 1 sheet k

=
(x:heet k, Y:heet k)

+ At(u:heet k, ‘:heet k)

+ (b%,eetV,, bysheetd (V.9)

where (q,, q2) are random variables each drawn from a
Gaussian distribution with mean zero and variance 2AtlR.

Exchange Sheets and Blobs, Sheet Reflection, and
Removing Blobs Outside the Domain

After the vortex elements (sheets + blobs) have moved,
their positions are checked:

(1) If any vortex blobs left the domain, eliminate them.
(2) If any vortex sheets left the domain, reflect them

back in.
(3) If any vortex blobs entered the boundary layer,

transform them to sheets.
(4) If any vortex sheets left the boundary layer, trans-

form to sheets.

In order to determine which of the above choices is
appropriate, we must determine the location of the vortex

element after the update. This may be done in parallel by
using the signed distances described in Section V.B. As
described there, the location is determined by using the
signed distance variable for the processor associated with
the cell containing the vortex element. The distance is then
used to determine which of the above tests should be
executed. The complete specification of the signed distance
flag and the parallel execution of the above tests is described
in excruciating detail in [34]. Finally, we perform garbage
collection to remove the holes in the arrays.

VI. Display

To display the results, we use a real-time visualization
environment [32] to analyze the results of the computa-
tion. Starting from a precomputed discrete set of time-
dependent flow quantities, such as velocity and density, this
environment allows the user to interactively examine the
data on a framebuffer using animated flow visualization
diagnostics, such as tracer particles and dye injection, that
mimic those in the experimental laboratory. As input, we
perform a stream function vortex-in-cell calculation to
obtain the velocity field on a grid. On an 8,192 processor
CM-2, images are updated on the framebuffer at nine frames
per second, producing essentially real-time motion and
an effective way to study the solution, analyze fluid
flow mechanisms, and compare numerical results with
experiment. For details, see [321.

VII. Timings

In this section we analyze the efficiency of the two main
kernels of the code, the N-body solver and the iterative
Poisson solver.

In order to give accurate timings for the N-body kernel of
the vortex code, we extracted that portion of the code and
ran simulations of the interaction of point vortices in two
dimensions. This code was written using a test kernel writ-
ten in *LISP. The runs were made on two CM-2 conligura-
tions, 4K and SK, with varying numbers of particles. We list
the timings for the replicated orrery algorithm in Table I. P
is the number of processors, N is the number of bodies, and
M is the number of times the orrery was replicated. T is the

TABLE I

Timings for N-body Kernel

P N M T T cmnm

SK 2048 4 0.33 0.1
4096 2 1.30 0.37
8192 1 5.1 1.48

4K 2048 2 0.63 0.19
4096 1 2.5 0.76

198 SETHIAN ET AL,

FIG. 7. Expanding/contracting nozzle.

2D VISCOUS INCOMPRESSIBLE FLOW 199

FIGURE ‘I-Continued

200 SETHIAN ET AL.

total time, in seconds, to compute all N* interactions, and expansion. After some distance, the channel suddenly
T comm is just the time spent in communications. contracts, and flow exits on the right.

Note that in all cases, the communications account for We took a uniform entrance and exit profile of unit speed,
about 30% of the total running time for the algorithm. As and the domain is inscribed in a box of side length unity.
we described previously, the complexity of the replicated The Reynolds number is 5000, and the time step is dt =
orrery algorithm is U(N/M) + O(log M). In the cases run 0.025. We chose a minimum sheet strength of 0.025 and
above, the O(N/M) term dominates. Note that, in fact, we solved the Poisson equation on a 128 x 128 grid.
see the correct behavior as N increases for a fixed number The flow portrait is as follows: As t = 0, the no-slip condi-
of processors. For example, for P = 8K, the times for. tion is instantaneously imposed, revealing the charac-
N = 2048,4096,8192 should vary as 1,4, 16, which they do. teristics of startup. The flow entering from the left is

visualized using a hydrogen bubble wire (Fig. 7a), stretched
vertically across the entrance. As the flow enters the expan-
sion section, the development of large, counterrotating fluid
structures in the upper and lower corners pull the flow
around and back into the “arms” of the domain (Fig. 7b).
At later times, (Fig. 7c), two large, counterrotating eddies
occupy the arms, effectively shunting off these sections of the
domain and turning the domain into a constant width
channel. Note that the flow itself has changed the effective
geometry of the domain. The majority of the flow now
entering from the left cannot tell the difference between this
“blocked” flow and flow in a straight channel. There is little
mixing between the central channel and the arms when
compared to initial times. Finally, at still later times,
(Fig. 7d), the counterroting eddy in each arm has moved to
the right and is joined by an opposite moving eddy trapped
in the upper and lower left corners. This final configuration
remains essentially fixed for the rest of the calculation.

A factor of 2-5 improvement in performance for the same
configuration and a similar number of bodies can be
obtained by using the multi-wire orrery described in
Appendix B. Using this approach, as the number of bodies
grows, for a fixed number of processors, the percentage of
time spent in communications decreases to less than 1%.
We are in the process of implementing this improved kernel
in our general code.

Next, we analyze the iterative Poisson solvers. After the
two-dimensional *LISP implementation was complete, we
began a CM Fortran version of the code, which will take
advantage of the slicewise compiler. At the time this article
went to press, the elliptic Fortran kernels were complete. All
of the timings below for the iterative Poisson solver refer to
this elliptic solver. We give timings for three different
iterative solvers: (1) SOR, (2) conjugate gradient, and (3)
preconditioned conjugate gradient to solve the Poisson
equation. Timings are given as the time per iteration. We
studied problems on a 256 x 256 mesh of points. Results
were executed on an 8K machine, giving a virtual processor
ratio of 8 for the 256 x 256 mesh. We study the timings for
the SOR algorithm, as well as a conjugate gradient algo-
rithm and a preconditioned conjugate gradient technique
implemented in our vortex code. SOR required 0.006783 per
iteration; conjugate gradient required 0.008653 s, and a pre-
conditioned conjugate gradient required 0.009072 s. On a
full machine (64K), these timings should be divided by a
factor of 8. Convergence was determined by variation in the
max norm of the residual over one iteration. With a con-
vergence criteria on 10p4, to compute the potential flow for
a square with left to right flow, SOR required 1132 itera-
tions to converge, conjugate gradient (CG) required 335,
and preconditioned conjugate gradient (PCG) required
187. With a convergence criterion of 10-5, SOR required
1795 iterations, CG required 400 iterations, and PCG
required 363 iterations. On a more complex geometry (the
valve described later), 10e4 convergence required 3559
SOR steps, 919 CG steps, and 909 PCG steps.

PART FOUR: RESULTS

Expanding/Contracting Nozzle

We begin with flow in an expanding and contracting
nozzle. Flow enters from the left, and encounters a sudden

Flow around an Island
Next, we compute flow in a fairly complicated domain

with an interior island (Fig. 8). Flow enters through a
narrow slit on the left with a uniform profile and
immediately encounters an island. Around that island on
the upper right is a narrow exit, past a large, vertical cavity.

We took a uniform entrance and exit profile of unit speed,
and the domain is inscribed in a box of side length unity.
The Reynolds number is 5000, and the time step is
At = 0.025. We chose a minimum sheet strength of 0.07 and
solved the Poisson equation on a 256 x 256 grid. The value
of the sheet-factor was 2, and we used a tolerance criterion
of lo-* for both the potential solver and the stream function
solver. After 360 time steps, there were 14,000 vortices and
5000 sheets.

In Fig. 8, we placed a hydrogen bubble wire across the left
entrance. The flow is split around the island and passes
through the middle constriction, creating counterrotating
eddies in all the corners. Above the island is a small indenta-
tion, which produces a small driven cavity problem,
revealing a counterrotating eddy structure. The large cavity
remains fairly quiet with minimal acitivity. We suspect that
this is the result of underresolution; typical wall velocities
are small relative to the minimum sheet strength, and thus
few sheets are triggered.

2D VISCOUS INCOMPRESSIBLE FLOW 201

FIG. 8. Flow around islands.

FIG. 9. Flow through CM-2.

202 SETHIAN ET AL.

FIG. 10. Flow through piston/valve.

2D VISCOUS INCOMPRESSIBLE FLOW 203

FIGURE 1lGContinued

204 SETHIAN ET AL.

Flow through the Connection Machine CMZ-A

Next, we model flow through a two-dimensional cross
section of the Connection Machine CM2-A (see Fig. 9). Air
enters at the bottom left and right and moves horizontally
towards the “circuit boards” (the vertical islands in the
domain). After flowing past the boards, the pathway splits
and moves down the outer walls, exiting on either side.

We took a uniform entrance and exit profile of unit speed,
and the domain is inscribed in a box of side length unity.
The Reynolds number is 5000, and the time step is
At = 0.025. We chose a minimum sheet strength of 0.8 and
solved the Poisson equation on a 256 x 256 grid. The value
of the sheet-factor was 2, and we used a tolerance criterion
of lop5 for both the potential solver and the stream function
solver. After 300 time steps, there were 8000 vortices and
10,000 sheets.

The simulation of this flow shows that the two streams
entering along the bottom from the left and right meet
below the circuit boards and create a pair of counterrotating
eddies which turbulize the flow. This turbulized flow enters
the narrow channels of the circuit boards, with an
oscillatory profile, exits the top, and forms a pair of large,
stagnant vortices which effectively narrow the exit orifice.
Past these eddies, the flow travels down the wall, creating
counterrotating vortices in each of the corners before exiting
out the sides.

Flow around a Piston/Valve

Finally, we modeled flow around a fixed valve in a piston
chamber. Flow enters from the left along two inlet streams
and encounters a quarter-open valve (Fig. 10). On either
side of the valve opening, the flow encounters a large cham-
ber with two vertical exits cut on the rightmost wall. We
took a uniform entrance and exit profile of unit speed, and
the domain is inscribed in a box of side length unity. The
Reynolds numbers is 5000, and the time step is At = 0.025.

After the no-slip condition is instantaneously imposed at
t = 0, entering flow curls around the valves on either side
and exits through the slits (Fig. 10a). As the calculation
progresses, the flow rolls up behind the valves into two large
eddies which trap considerable fluid and remain as fixed,
rotating structures behind the valve (Fig. lob, c). This pair
of eddies serves to narrow the passage around the valve,
inducing the growth of counterrotating eddies in the top
and bottom left corners of the main chamber, which further
restricts the flow around the valve. These coherent fluid
structures cause further mixing of the internal flow
(Fig. 10d).

APPENDIX A: THE CONNECTION
MACHINE ARCHITECTURE

Here, we briefly describe the basic design of the Connec-
tion Machine CM-2. For details, see [151. The Connection

Machine CM-2 is composed of a sequencer and a maximum
of 65,536 single-bit processing elements. The processors
run in SIMD (single instruction multiple data) mode,
with the instruction stream broadcast by the sequencer.
It is possible to deselect any subset of the processors, so
that an instruction is only performed by those processors in
the currently selected set. The sequencer is controlled by
an external front end machine, usually a SUNTM,
SYMBOLICSTM Lisp Machine, or VAXTM.

Each processor has 64K or 256K bits of local RAM, with
a single high-speed floating point unit for every 32 pro-
cessors. There are 16 processors on a CM-2 chip and the
chips are connected in a boolean n-cube topology, e.g., a
12-cube for a 64K processor machine. The system software
supports the notion of virtual processors. This allows the
programmer to implement code with the number of pro-
cessors appropriate for the application. Virtual processors
are mapped to physical processors by evenly segmenting the
memory of the physical processors and time multiplexing
the physical processors. The virtual processor ratio is the
number of virtual processors assigned to each physical
processor by the mapping. In the N-body model, each body
is assigned to a virtual processor reponsible for computing
the accumulated forces on the body.

The CM-2 supports two basic communication
mechanisms. There is general pointer-based communication
by which data can be exchanged between the memories of
different processors as necessary to complete any computa-
tion. We refer to this as a send. For more structured
communication patterns, the machine can be efficiently
configured as a k-dimensional grid; these grids are
automatically superimposed by the system software onto
the boolean cube using a multi-dimensional Gray code
mapping. These communications patterns are periodic in
each dimension of the grid. Motion of the data, from all
processors to their nearest grid neighbors is known as a
NEWS communication. A particularly useful primitive
available on the Connection Machine computer are
scans, which combine computations and communications.
In logarithmic time, these operators allow one to spread
data through the CM-2, as well as accumulate summands
(plus-scan) from each processor.

There are two programming models for the machine.
Calculations on the machine are performed in two ways. In
the standard tieldwise model, the storage of a 32-bit word
would be allocated in 32 consecutive bits of a physical
processor’s memory. However, when performing floating
point computations, the data must be transposed before
being loaded into floating point hardware, thus better
performance is usually obtained by viewing the processors
in a slicewise configuration. That is, we consider processing
nodes on the machine to be the ensemble of a floating
point unit and the memory of the 32 associated physical
processors of the CM-2. In this approach, a word is stored

2D VISCOUS INCOMPRESSIBLE FLOW 205

in a 32-bit slice across the memories of the 32 processors in
the node, i.e., one bit per processor. From this viewpoint, a
64K processor CM-2 becomes 2048 floating point nodes,
connected as an 11-dimensional hypercube with two com-
munication channels between connected nodes, instead of
one. Moreover, this model of the machine meshes efficiently
with the way in which the floating point units actually
access data from their associated processors, i.e., in one
cycle a 32-bit slice across the processors is read into the
floating point unit. When the original version of this code
was implemented, the slicewise model was not available
from high level software.

Finally, a 1280 x 1024 frame buffer with parallel I/O is
directly connected to the memory of a Connection Machine.

APPENDIX B: FURTHER WORK

Between when this paper was first submitted and the time
of its acceptance for publication, we began a new implemen-
tation of the code, taking advantage of the slicewise
compiler which became accessible from high level Fortran.
This has led to the work on multi-wire N-body solvers and
conjugate gradient techniques discussed below.

Multi-Wire N-Body Solvers

An alternate N-body solver results from assigning several
bodies to each floating point node and performing the
orrery rotation by introducing a multi-wire all-to-all broad-
cast which makes optimal use of the communication
bandwidth of the hypercube using “rotated and translated
Gray codes” described in [22] and summarized below. As
described in Appendix A, using the slicewise programming
model, a 65,536 processor CM-2 becomes a 2048 node
hypercube (d= 11) with 22 communication channels per
node. A typical vortex calculation for fluid within complex
geometries generates many thousands of vortex elements
and thus, in this case, the replicated orrery algorithm is no
longer appropriate. Instead, we map N/P bodies to each
node. There are two copies of the data: a static copy
responsible for accumulating the forces for those bodies and
a dynamic copy which will circulate through every other
node of the hypercube so that all N2 interactions are
performed. The motivation for the algorithm is to have the
dynamic copy circulate in such a way that we use all of the
hypercube wires at each communications step.

The communication pattern is constructed by finding as
many conflict-free paths as possible leaving a node, visiting
all others, and returning to its starting point. By translating
the starting point of each of these paths to every node of the
hypercube, the data in each node circulates to every other
one in as short a time as possible.

More precisely, given a d-dimensional cube, a Gray code
yields a Hamiltonian cycle through the cube, i.e., a path that

visits every node of the cube once and returns to its origin
node. It takes 2d - 1 steps for any such path to traverse
every node in the cube. From this path we can generate
d - 1 additional paths by rotating through each dimension
of the hypercube. We can take these d paths and translate
them to every node of the hypercube so that the data in each
node circulates to every other one. The resulting paths are
timewise edge independent; that is, at each step none of the
d 2d Hamiltonian cycles traverse the same edge in the same
direction. We allow edges to be traversed in different
directions on the same step because the wires of the CM-2
can be assumed to be bidirectional.

After each edge of the path is traversed, we perform those
interactions that depend on the data available in each
computational node. This eliminates the need to store
the circulating data. The computational complexity
of this approach is O(N2/P) in arithmetic and
O(ceiling(N/2d. 1/2d) . (2d - 1)) in communications. The
latter estimate derives from the number of steps it takes to
send N/P data items out of a node on 2d wires times the
length of the communications path. Further details of the
multiwire N-body solver based on a slicewise model may be
found in [ll].

Conjugate Gradient Methods for the Elliptic Solvers

The iterative relaxation solver for the Poisson equation in
original code can be replaced by a conjugate gradient
method. In later versions of the code we have done so, and
examined the potential benefits in both conjugate gradient
and preconditioned conjugate gradient. As discussed in the
section on timings, changing to a gradient method substan-
tially reduced the iteration count. However, beyond
diagonal preconditioning, we were unable to produce an
effective preconditioner that works effectively in arbitrary
geometries.

ACKNOWLEDGMENT

We wish to thank Bruce Boghosian for his considerable insight and
advice during the design of this code, Alan Edelman and Washington
Taylor for their contributions to the N-body solvers, James Salem for his
work on the visualization package, and Carmen Cracker for her help in
preparing the figures. The vortex code described within was written in
*Lisp, a parallel extension of the programming language Lisp. All
calculations were performed at Thinking Machines Corporation on the
Connection Machine CM-2.

REFERENCES

I. C. R. Anderson, SIAM J. Numer. Anal. 23,413 (1986).
2. C. Anderson and C. Greengard, SIAM J. Numer. Anal. 22,413 (1985).

3. A. W. Appel, SIAM J. Sci. Star. Compur. 6, 85 (1985).

4. J. F. Applegate, M. R. Douglas, Y. Gursel, P. Hunter, C. Seitz, and
G. J. Sussman, IEEE Trans. Compuf. 84, 822 (1985).

5. S. B. Baden and E. G. Puckett, J. Comput. Phys. 91 (1990).

206 SETHIAN ET AL.

6. J. Barnes, “Multiple-Timestep N-body Algorithms for Parallel
Computers,” Institute for Advanced Study, Princeton, (unpublished).

7. J. Barnes and P. Hut, Nature 324,446 (1986).

7. J. T. Beale and A. Majda, J. Comput. Phys. 58, 188 (1985).

9. J. T. Beale and A. Majda, Math. Compuf. 39, 1 (1982).

10. J. T. Beale and A. Majda, Math. Comput. 39, 29 (1982).

11. J-Ph. Brunet, A. Edelman, and J. P. Mesirov, Hypercube algorithms
for parallel direct N-body solvers, in preparation.

12. A. J. Chorin, J. Fluid Mech. 57, 785 (1973).

13. A. J. Chorin, J. Comput. Phys. 27,428 (1978).

14. A. J. Chorin, SIAM J. Sci. Stat. Comput. 1, 1 (1980).

15. The Connection Machine: Technical Summary (Thinking Machines
Corporation, Cambridge, MA, 1989).

16. A. F. Ghoniem and F. S. Sherman, J. Comput. Phys. 61, 1 (1985).

17. C. Greengard, J. Comput. Phys. 61, 345 (1985).

18. L. Greengard and V. Rokhlin, J. Comput. Phys. 73,325 (1987).

19. 0. Hald, SIAMJ. Sci. Stat. Compur. 7, 1373 (1986).

20. 0. H. Hald, SIAM J. Numer. Anal. 16, 726 (1979).

21. 0. H. Hald, SIAMJ. Numer. Anal. 24, 538 (1987).

22. S. L. Johnsson and C. T. Ho, IEEE Trans. Comput. 38, 1249 (1989).

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

D. G. Long, J. Am. Math. Sot. 1, 799 (1988).

A. Majda, “Vortex Dynamics: Numerical Analysis, Scientific Com-
puting, and Mathematical Theory,” ICIAM, ‘87.

J. P. Mesirov and W. Taylor, A continuum of N-body solvers,
unpublished manuscript, (1988).

M. Perlman, J. Comput. Phys. 59, 200 (1985).

E. G. Puckett, SIAM J. Sci. Stat. Compuf. 10, 298 (1989).

E. M. Reingold, J. Nievergelt, and N. Deo, Combinarorial Algorithms
(Prentice-Hall, Englewood Cliffs, NJ, 1977).

J. A. Sethian, “A Brief Overview of Vortes Methods,” in Vortex
Methods and Vortex Motion, edited by K. Gustafson and J. 2. Sethian,
Frontiers in Applied Mathematics (SIAM, Philadelphia, 1990).

J. A. Sethian, J. Comput. Phys. 54,425 (1984).

J. A. Sethian and A. F. Ghoniem, J. Compuf. Phys. 74,283 (1988).

J. A. Sethian and J. B. Salem, In?. J. Supercomput. Appl. 3(2), 10 (1988).

J. A. Sethian, J-Ph. Brunet, A. Greenberg, and J. P. Mesirov, A multi-
wire implementation of a general vortex code for 2-dimensional
turbulent flow, in preparation.

J. A. Sethian, J-Ph. Brunet, A. Greenberg and J. P. Mesirov, CPAM
Report 504, Dept. of Mathematics, Univ. of California, Berkeley, 1990
(unpublished).

